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I. About Binomial Theorem I’m Teeming With
A Lot Of News1

Suppose that every day I get the Wordle right with probability 0.1, independent
of all other days. What is the probability that I get exactly 8 out of the next
10 Wordles right?2

Here are some classic mistakes that people make when answering such questions:

An extremely wrong answer: 0.1 · 8. If things 1, 2, etc. are indepen-
dent, and we want the probability of thing 1 happening and thing 2 happening
and so on, we have to multiply their probabilities, not add them. To see that
adding them is wrong, suppose the question had asked about getting 10 out of
10 right; then we would have the answer 0.1 · 10 = 1, which can’t be correct.

A very wrong answer: (0.1)8. But this does not account for the failures
as well as the successes. You can immediately see this is wrong by imagining
that we wanted the probability of getting 0 out of 10 right; then we would have
(0.1)0 = 1, which, again, doesn’t make sense.

A somewhat wrong answer: (0.1)8 · (0.9)2. Now we have accounted for
the failures. But this still incorrect; here is one way to see why. What if the
question had instead been:

What is the probability that I get the next 2 Wordles wrong, and then get
the following 8 Wordles right?

Then the answer is more clearly 0.9 · 0.9 · 0.1 · 0.1 · ... = (0.9)2 · (0.1)8. But
wait, that’s the same as our supposed answer to the different question above,

1This is from the Major-General’s Song in Gilbert and Sullivan’s The Pirates of Pen-
zance. One wonders just how much news he could have about this one theorem! Then again,
Wikipedia also tells me that Sherlock Holmes’s rival Professor Moriarty wrote a treatise on
it. No wonder he turned to crime...

2This problem topic will probably feel very dated a year from now.
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which was asking about the much broader event of getting any eight right, not
specifically the last eight! So that can’t be correct.

Indeed, the problem is that we are failing to account for all of the different
ways we can get exactly 8 out of 10 Wordles right. We know exactly how to
count the ways: it is

(
10
8

)
, and for each of these possibilities, the probability is

(0.1)2 · (0.9)8. Since these are mutually exclusive, the overall correct answer is

A not at all wrong answer:
(
10
8

)
· (0.1)8 · (0.9)2

Now we see why
(
n
k

)
is also called the binomial coefficient. We need it to account

for the various ways that our k successes and n− k failures can be arranged to
comprise our n total attempts.

Is there a simpler way of answering the question without using the binomial
distribution? Not unless you think it’s simpler to list off a bunch of orderings
of 8 right and 2 wrong Wordles like
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...

instead of just finding that
(
10
8

)
= 10!

8!(10−8)! = 10·9
2·1 = 45, without having to

enumerate all 45 possibilities.

However, even the binomial theorem brings its own annoyances: for large n,
especially when k is close to n

2 ,
(
n
k

)
can be an enormous number that is slow

to calculate. So we often approximate the binomial with a Poisson (which is
also discrete) or, even more commonly, the normal distribution (which is con-
tinuous). But for now let’s practice with the binomial in its own right, while
reviewing some discrete probability...
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Problem 1. Here’s a fun game to play with 20-sided dice. If you don’t happen
to have twenty 20-sided dice around3, you can Google for “die roller”. In that
search page app, you can click/touch a die to delete it, and you can add more
dice using the buttons at the bottom. (The total isn’t needed for this game.)

You start with 20 dice. There are 20 rounds in the game. On the n-th round,
you roll all your dice and then eliminate all dice that match n. When a die
is eliminated, you set it aside and no longer roll it after that. The goal of the
game is to eliminate all of your dice before the 20 rounds are over.

(a) What is the probability of winning this game on the first round?

(b) Consider the following informal argument about why it shouldn’t be too
hard to win the game: the first die will roll a 1 in 1 of the 20 rounds, in
expectation. The second die will roll a 2 in 1 of the 20 rounds, in expecta-
tion, and so on. So if we rely on the n-th die to produce the n-th number,
we’re covered. And this isn’t even accounting for the fact that other dice
might roll the numbers we need, so we have even more chances! So we
should be fine, right?

Why doesn’t this argument hold water? (You may wish to solve parts
(c) and (d) first and/or try playing the game first.)

(c) For some particular arbitrary die – say, the first – what is the probability
that it is never eliminated?

(d) What is the probability of winning this game?

(e) My personal best is getting down to 3 dice. What is the probability of
having 3 or fewer dice left at the end? (Call the answer to (c) p.)

(f) Can you think of a name for this game?

3Once I played a Dungeons and Dragons character who could shapeshift into a 12-headed
hydra, and he rolled 12 20-sided dice to attack, so I really did need a lot of them. It was
awesome. (Sadly, 12 was the limit on heads.) Eventually he just chose to live as a hydra
forever, because, I mean, why wouldn’t you?
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Solutions to Problem 1.

(a) To win on the first round, every die would have to come up 1. The chances

of this are 1
20 ·

1
20 ·... =

1

2020
. As we probabilists say – that ain’t happenin’.

(b) Even though the statements about expectation are true, the problem is
that just because something should happen once in expectation does not
mean that it is a sure thing. For instance, when we roll two six-sided dice
and add them together, the expected value is 7, but we will only see a
value greater than or equal to 7 just over half the time. If we’re relying
on something like this to happen for all 20 dice independently, our overall
probability will dry up pretty fast.

(c) For the die to never be eliminated, it must roll something other than 1 in
the first round, then something other than 2 in the second round, and so
on. In each round, it has a 19

20 chance of surviving, so the overall survival
chance is P (survive round 1) · P (survive round 2|survived round 1) · ... =

(
19

20
)20 ≈ 0.35849.

(d) Given our answer to (c), any given die is eliminated with probability 1−
( 1920 )

20) ≈ 0.64151. To win, we need all 20 of them to be eliminated, so

our win probability is (1− (
19

20
)20)20 ≈ 0.00014 .

(e) First, let’s break the problem down: P (at most 3 left) = P (exactly 3 left)+
P (exactly 2 left) + P (exactly 1 left) + P (exactly 0 left).

Let’s look at the first of these. We want the probability of 3 uneliminated
dice and 17 eliminated dice. From (c) and (d) we got p, the probability
that an individual die is uneliminated, and also the probability that an
individual die is eliminated: 1−p. But it also matters which of the dice are
the uneliminated ones, so we use the binomial distribution with n = 20.
(Note: a “success” here is actually a die not being eliminated.)

P (exactly 3 left) =
(
20
3

)
p3(1− p)17

Repeating this for each scenario, we arrive at the final answer of

3∑
k=0

(
20

k

)
pk(1− p)20−k , which turns out to be around 0.03769.

(f) This was a silly reference to Look Around You: Maths (see the video
linked from our course page), but I honestly could use a good name for
the game, if anyone has one!
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Here’s some Python code that simulates the game:

import random

def play_game():

dice_remaining = 20

for round_num in range(1, 21):

dice = [random.randint(1, 20) for _ in range(dice_remaining)]

dice_remaining -= dice.count(round_num)

return dice_remaining

NUM_TRIALS = 10000000

totals = [0]*21

for _ in range(NUM_TRIALS):

totals[play_game()] += 1

print([v / NUM_TRIALS for v in totals])

Results from 10 million trials:

0: 0.0001458

1: 0.0015463

2: 0.0082727

3: 0.0276999

4: 0.0659006

5: 0.117634

6: 0.1646077

7: 0.1839453

8: 0.1668144

9: 0.1244332

10: 0.0763533

11: 0.0388207

12: 0.0162762

13: 0.005561

14: 0.0015765

15: 0.0003471

16: 5.91e-05

17: 5.6e-06

18: 6e-07

19: 0.0

20: 0.0

These agree pretty well with the true values. Unsurprisingly, there were no
games in which we never eliminated a single die.

(
20
20

)
p20(1 − p)0 = p20 =

(( 1920 )
20)20, which is about 1 in a billion (109).4

4Then again, if you work for a tech behemoth, one-in-a-billion bugs and phenomena will
happen many times a day...
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II. Geometric Distributions, or, The Ultimate Fris-
bee Match That Never Started

The geometric distribution models the total number of trials needed to get a
single “success”.5 For instance, suppose your probability of winning at a carni-
val game – say, the one where you have to roll the bowling ball so it goes over
the hump but then doesn’t return – is 0.01.6. But you really want that giant
stuffed Minion or whatever. How many times would you expect – in the sense
of “expectation” – to have to play the game?

We can think about this on a case by case basis. Let X be a random vari-
able for the number of attempts it takes us.

• With probability 0.01 – that is, 1% of the time – we win on our first try,
and so P (X = 1) = 0.01.

• Otherwise, with probability 0.99, we have to try a second time. With
probability 0.01, we win on this second attempt, so P (X = 2) = 0.99·0.01.

• Otherwise, with probability 0.99, we have to try a third time. Our friends
are getting impatient, but this prize is no longer a cheaply made stuffed
movie character, it is a symbol of our worth as a human being. Our
honor is on the line. With probability 0.01, we win on this third attempt,
so P (X = 2) = 0.99 · 0.99 · 0.01...

...and so on. We see that the probability mass function is P (X = k) =
0.01 · 0.99k−1, and E[X] = 1 · 0.01 + 2 · 0.99 · 0.01 + 3 · 0.992 · 0.01 + ... and
so on. But how do we take this weighted average that goes on forever? We
could observe that eventually the terms become tiny, and handwave and ignore
them, but we humans sometimes underestimate what a bunch of tiny terms can
add up to!

Here’s a clever way to find the expectation. (For now, we’ll replace 0.01 with
the more general p.) The key insight is that if we have a failure, we are right
back where we started: the expected number of trials from that point is the
same as the expected number of trials when we started. That is, the geometric
distribution is memoryless and cruel. It doesn’t care that we’ve been trying
hard. The fact that we lost a few times doesn’t make us any more likely to win
the next time. So, on our first trial:

• With probability p, we win! So it takes us just 1 trial.

• Otherwise, with probability 1 − p, we lose. Now it’s going to take us
1 + E(X) trials in total: 1 for the trial we just had, and E(X) for the
remaining ones, since it’s like we’re starting completely over.

5You will see this defined differently in different places. Sometimes it is the number of
successes before a failure instead; sometimes the final trial isn’t counted. But I’ve chosen to
be consistent with Slide 14 of Lecture 9.

6Yeah right, we know it’s more like 0.
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Therefore E[X] = p·1+(1−p)·(1+E[X]). Now we rearrange and solve for E[X]:

E[X] = p+ 1 +E[X]− p− p ·E[X]

p ·E[X] = p+ 1 +E[X]− p−E[X]

E[X] = 1
p .

So in expectation, it will take us 100 trials to win our prize. That is going
to be one expensive cheap stuffed toy, but we will convince ourselves that it is
worth it. It will stare down balefully at us from our bookcase, reminding us of
all the time and money we squandered, and of our friends’ increasing awkward
pity, but also of our determination. Yet its smile will torment us forever.

Problem 2. On Homework 2, we saw a better way decide who starts first
in an Ultimate Frisbee game, using only a single Frisbee with some unknown
probability p of coming up “heads”:

• Flip the Frisbee twice.

• If we get a head followed by a tail, the away team starts.

• If we get a tail followed by a head, the home team starts.

• Otherwise, we start over.

Impressively, as we saw, this is always fair regardless of the value of p. But
what if the Frisbee is quite biased, i.e., p is quite close to 0 or to 1? Then this
process might go on for a long time!

(a) In terms of p, what is the probability that only one round is needed to
decide who goes first?

(b) What is the expected number of rounds needed to decide who goes first?

(c) Suppose p is smaller than 0.5. How small must it be for the probability
of deciding who goes first to take 3 rounds or more over 90% of the time?
(Feel free to use Wolfram Alpha. An approximate answer is fine.)

(d) Your friend proposes to approximately halve the number of flips required,
by using the second flip of each round as the first flip of the next round.
Is this method still fair?
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Solutions to Problem 2.

(a) As in Homework 2, the process ends only when we get a head followed
by a tail (probability p(1 − p)) or a tail followed by a head (probability

(1− p)p), for a total probability of 2p(1− p) . So this is also the chance

that the process only takes one round.

(b) Using the result from (a), and the general formula for the expectation
of a geometric distribution from the previous page, we expect to need

1

2p(1− p)
rounds.

(c) The probability that 3 or more rounds are needed equals 1 minus the prob-
ability that 1 or 2 rounds are needed, so we want P (X = 1)+P (X = 2) to
be less than or equal to 0.1. Let’s change that to P (X = 1)+P (X = 2) =
0.1 so that we can find the exact threshold value of p where this starts to
be true.

From (a) we know that P (X = 1) = 2p(1 − p); let’s call this proba-
bility q for future convenience.

The probability mass function for our distribution is P (X = k) = (2p(1−
p))(1 − 2p(1 − p))k−1 = q(1 − q)k−1, so we have P (X = 2) = q(1 − q).
Then P (X = 1) + P (X = 2) = q + q(1− q) = 2q − q2.

So we want 2q − q2 = 0.1, i.e. q2 − 2q + 0.1 = 0. Using the quadratic
formula7, we get q ≈ 0.05132 or q ≈ 1.94868.

Remembering that q = 2p(1 − p), we find the solutions p ≈ 0.02636 and
p ≈ 0.97365 in the first case, and no solutions in the second case.8 Since
we were asked for a p less than 0.5, the answer is ≈ 0.02636 .9

(d) Unfortunately, there is a problem! Suppose the first two flips are TT.
Then we use that second T as the first flip of the next round. But then
either we get H as the next flip and end the game (with the home team
going first), or get T and use that as the first flip of the following round,
and so on. So we end up trapped into choosing based on whatever the
very first flip was, and we already know that flip is not fair.

7By which I mean “plugging it into Wolfram Alpha”
8Well, there are complex solutions, but in CS109, if you get anything involving i, you

should quietly close the car door and reverse your way back into real-land.
9You will see this type of problem – in which you are solving for some threshold p that

makes something happen with some other probability p′ – a lot from Chris, which is why I
included this one here.
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III. Poisson: the interval matters!

We have seen that the Poisson is a discrete distribution that it measures the
number of independent occurrences10 within a certain window of time.11 Specif-
ically, let X be a random variable measuring the number of discrete occurrences
within ANY time interval of a particular size. If the expected number of

occurrences per that interval is λ, then f(X = x) = λxe−λ

x! .

For instance, suppose that, on average, three chickadees fly by our window
every five minutes.

Suppose that we choose to model the passage of chickadees using the Poisson
distribution. (This is probably a bad idea, since chickadees tend to hang around
in territories, so we are probably seeing the same ones over and over again. Also,
they are very social, so we might expect to see them go by in groups. But for
our purposes, pretend they are independent.)

Suppose we want to know the probability that we see four chickadees in the
next minute (or any minute, since the Poisson distribution applies equally well!)
But our rate λ is 3 chickadees

5 minutes , which uses an interval of 5 minutes. So we need to

adjust it to fit our 1 minute interval: 3 chickadees
5 minutes · 1/5

1/5 = 0.6 chickadees
1 minute . Then we

can use the Poisson PMF: 0.64e−0.6

4! ≈ 0.00296. So it is unlikely, but possible!

Problem 3.

(a) What is the probability of seeing exactly 1 chickadee in the next 2 minutes?

(b) What is the probability of seeing exactly 1 chickadee in the next minute,
then 0 chickadees in the minute after that?

(c) What is the probability of seeing 0 chickadees in the next minute, then
exactly 1 chickadee in the minute after that?

(d) How are your answers to (a), (b), and (c) related? Why is this?

(e) What is the probability of seeing at least 1 chickadee in the next minute?

(f) Suppose we see exactly 1 chickadee in the next minute. How many chick-
adees would we expect to see in the minute after that?

10I use this instead of “events” to avoid confusion with e.g. “event space”.
11Or space, as you’ll see in your CS109 section this week, but we’ll stick to time for simplicity.
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Solutions to Problem 3.

(a) Our rate of chickadees per 2 minutes is 3 chickadees
5 minutes · 2/5

2/5 = 1.2 chickadees
2 minutes .

The probability of seeing exactly one is 1.21·e−1.2

1! =
1.2

e1.2
.

(b) As in the example from the previous page, for a 1 minute interval, we
use a rate of 0.6 chickadees

1 minute . The probability of seeing exactly one chickadee

in the first minute is 0.61·e−0.6

1! = 0.6
e0.6 . The probability of seeing zero

chickadees in the second minute is 0.60·e−0.6

0! = 1
e0.6 . Because the Poisson

distribution holds independently for every interval of the same size, the

overall probability is 0.6
e0.6 · 1

e0.6 = 0.6
e0.6+0.6 =

0.6

e1.2
.

(c) By similar analysis as in part (b), the answer is also 1
e0.6 · 0.6

e0.6 =
0.6

e1.2
.

(d) We see that

P (1 chickadee in 2 minutes) =

P (1 chickadee in the first minute, 0 in the second minute)

+ P (0 chickadees in the first minute, 1 in the second minute).

This makes sense because the situations in (b) and (c) are mutually ex-
clusive and exhaustive possibilities for (a). (If there is only one chickadee
in two minutes, it must appear either in the first minute or in the second
minute.)12

(e) Whenever you see “at least one”, you should try to use our old trick: either
there is at least one thing, or there are no things. Finding P (X ≥ 1) would

entail solving an infinite summation
∑∞

x=1
0.6xe−0.6

x! , which is intractable.
(OK, maybe we could just quit once the terms start getting negligibly
small.) But finding P (X = 0) is easier; we did exactly this during part

(b), and the answer was 1
e−0.6 . So our answer here must be 1− 1

e−0.6
.

(f) This is tricky. We know that in general, we expect to see 1.2 chickadees
in 2 minutes. If we are considering a particular 2-minute interval, and we
are conditioning upon having already seen 1 chickadee in the first of those
minutes, it might seem that we should now expect to see 0.2 chickadees in
the second of those minutes. But remember that the Poisson distribution

12What if it shows up right on the boundary between minutes? Although we are forcing
chickadees to be discrete – we can’t have 0.5 chickadees show up – time is continuous, so the
probability of this happening is 0. We will address this troubling phenomenon next week.
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applies equally and independently to any interval, so our expected number
of chickadees in the second minute is still 0.6 .

This means that we will see an expected 1.6 chickadees in those two min-
utes. Doesn’t this violate what we said earlier about the expected number
of chickadees in a 2-minute interval? Why doesn’t it have to be 1.2?

The difference here is that we have already conditioned on a non-average
situation – 1 chickadee for 1 minute is high. There is no reason that the
expectation of 1.2 chickadees per 2 minutes should hold even after we do
this kind of conditioning. Suppose that we had said we saw 2 chickadees
in the first minute, which is certainly a thing that can happen. But then,
by the same logic, we would have to nonsensically argue that we would
expect to see -0.8 chickadees in the second minute!

Similarly, suppose that I rolled two hidden 6-sided dice and peeked at
the first one, then told you (truthfully) that the first one was a 5. You
wouldn’t think, “the expected sum of the two dice is 7, so the expected
value of the remaining die must be 2.” The expected value of that remain-
ing die is still 7

2 , as usual.

Hopefully these problems make the Poisson distribution feel a bit less like dark
magic. It doesn’t enforce any constraints that are internally contradictory.

Next week, we will dig deeper into the link between the binomial, Poisson,
and exponential distributions.

IV. Additional Review Problems

Problem 4. Suppose we roll two identical 4-sided dice; let the results be A
and B, respectively. Let X = 2A, and let Y equal A + B. (That is, X and Y
are new random variables based on the random variables A and B.)

(a) Intuitively, would you expect E[X] to be greater than, equal to, or less
than E[Y ]? Why?

(b) What are E[X] and E[Y ]?

(c) Intuitively, would you expect Var[X] to be greater than, equal to, or less
than Var[Y ]? Why?

(d) What are Var[X] and Var[Y ]?

Problem 5. Let A be an event that occurs with probability p. Let IA be the
corresponding indicator random variable. What are E[IA] and Var[IA]?
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Solutions to Problem 4.

(a) X is like adding a copy of A to itself (and those two copies are clearly not
independent), whereas Y is adding two clearly independent variables A
and B. But A and B each have the same mean of 1+2+3+4

4 = 5
2 . We can

apply linearity of expectation to get E[X] = E[A + A] = E[A] + E[A] =
5
2 + 5

2 = 5, despite the nonindependence. Similarly, E[Y ] = E[A + B] =
E[A] +E[B] = 5

2 + 5
2 = 5.

(b) As above, E[X] = E[Y ] = 5 .

We can also get these values from the distributions of the two variables,
and we might as well find those now, since they will be helpful in part (d):

• Distribution of X: This is just like crossing out the value on each face
of the die and replacing it with twice the value. The distribution is
P (X = 2) = 1

4 , P (X = 4) = 1
4 , P (X = 6) = 1

4 , P (X = 8) = 1
4 .

• Distribution of Y : We can make the same sort of table as we did for
6-sided dice in Week 1, but for 4-sided dice instead:

1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

The distribution is P (X = 2) = 1
16 , P (X = 3) = 1

8 , P (X = 4) =
3
16 , P (X = 5) = 1

4 , P (X = 6) = 3
16 , P (X = 7) = 1

8 , P (X = 8) = 1
16 .

Then the expectations are:

• E[X] = 1
4 · 2 + 1

4 · 4 + 1
4 · 6 + 1

4 · 8 = 5

• E[Y ] = 1
16 · 2 + 1

8 · 3 + 3
16 · 4 + 1

4 · 5 + 3
16 · 6 + 1

8 · 7 + 1
16 · 8 = 5

(c) Taking A and multiplying it by 2 just “stretches out” the distribution even
more. But when we add together A and B, it is possible that we will get
a high roll on A that helps to “cancel out” a low roll on B, or vice versa.
So Y is more concentrated around its mean than X, i.e., Var[X] should
be larger than Var[Y ]. Compare the two distributions; here, the values
are given as percentages just for easier visual inspection.

2 3 4 5 6 7 8
X: 25 0 25 0 25 0 25
Y : 6.25 12.5 18.75 25 18.75 12.5 6.25

This idea turns out to have enormous implications in probability and
statistics, because it is at the heart of the Central Limit Theorem, which
we will learn about soon in CS109.
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(d) We can calculate variance in a couple equivalent but grindy ways:

• Way 1: Use e.g. Var[X] = E[X2] − (E[X])2. From the distribution
of X, we see that E[X2] = 1

4 (2
2) + 1

4 (4
2) + 1

4 (6
2) + 1

4 (8
2) = 30,

so Var[X] = 30 − 52 = 5 . From the distribution of Y , we get

E[Y 2] = 1
16 (2

2)+ 1
8 (3

2)+...+ 1
16 (8

2) = 55
2 , so Var[Y ] = 55

2 −52 =
5

2
.

• Way 2: Use e.g. Var[X] = E[(X −E[X])2]. Then this equals 1
4 (2−

5)2 + 1
4 (4− 5)2 + 1

4 (6− 5)2 + 1
4 (8− 5)2 = 5, as before. For Y , we get

1
16 (2− 5)2 + 1

8 (3− 5)2 + ...+ 1
16 (8− 5)2 = 5

2 , also as before.

Solution to Problem 5. Recall from the Week 3 notes that the expectation
of an indicator random variable is just the probability p of that variable’s un-
derlying event, because E(IA) = 0 · (1− p) + 1 · p = p .

To find the variance, let’s use Var(IA) = E[I2A] − (E[IA])
2. E[I2A] = 02 · (1 −

p) + 12 · p = p, so Var(IA) = p− p2 = p(1− p) .

Problem 6. Let A and B be two events, each with nonzero probability. Which
of the following are always true?

(a) P (A) + P (B) ≤ 1.

(b) P (A) + P (B)− P (A|B)P (B) ≤ 1.

(c) P (A|B) ̸= P (B|A).

(d) P (A|B) + P (Ac|B) = 1.

(e) P (A|B) + P (A|Bc) = 1.

(f) P (A|B) + P (A|Bc) = P (A).

(g) P (A|B)P (B) + P (A|Bc)P (Bc) = P (A).

Problem 7. There is a subtle issue with the following attempted solution to
Question 7 on Homework 2. (Thanks to a student for asking about this on Ed.)

P (visitor is robot|failed at least one test) = P (failed at least one test|visitor is robot)P (visitor is robot)
P (failed at least one test)

= P (failed at least one test|visitor is robot)P (visitor is robot)
1−P (passed first test)·P (passed second test)

Specifically, it is not necessarily true that

P (failed at least one test) = 1− P (passed first test) · P (passed second test).

Can you explain why not? (Hint: Notice that this probability includes both
humans and robots.)
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Solutions to Problem 6.

(a) Not always true . This would always be true if the events were mutually

exclusive. But what if we are surveying a person and the events are: A:
the person likes puppies, B: the person likes kittens? Both of these values
are likely to be very close to 1, so P (A) + P (B) will exceed 1.

(b) Always true . Notice that P (A|B)P (B) = P (A ∩ B), by the definition

P (A|B) = P (A∩B)
P (B) . So the expression P (A) + P (B) − P (A ∩ B) exactly

corrects for the above issue by subtracting off any double-counting (i.e.
overlap) between P (A) and P (B).

(c) Not always true . Although it is often the case that P (A|B) ̸= P (B|A),

sometimes the two are equal. One trivial example is when A and B are
the same event. A less trivial example is when e.g. we roll a 4-sided die,
and A is the event of rolling 1 or 2 and B (defined on the same roll as A)
is the event of rolling an odd number.

(d) Always true . Even if we condition on B, i.e. restrict ourselves to looking

only at the world in which B is true, it still has to be the case that either
A happens or it doesn’t.

(e) Not always true . For example, suppose I divide the world into people

born January-June and people born July-December. Then suppose that I
claim P (likes puppies|born January-June)+P (likes puppies|born July-December) =
1. But almost everyone likes puppies! So both the P (likes puppies|born January-June)
and P (likes puppies|born July-December) terms will be close to 1, and
their sum will be close to 2.

(f) Not always true , for the same reason as above.

(g) Always true . This is the Law of Total Probability: it is a weighted

average of P (A) over the mutually exclusive (and exhaustive) scenarios B
and Bc.

Solution to Problem 7. Let H and R be the events of being human and
robot; let T1 and T2 be the events of passing the first and second tests.

It is true that P (failed at least one test) = 1 − P (T1 ∩ T2), but the attempted
solution has 1 − P (T1) · P (T2). So it is implicitly treating T1 and T2 as inde-
pendent, i.e. assuming P (T1) ·P (T2) = P (T1 ∩ T2). It seems like this should be
the case because they are two separate tests, but:

P (T1) = P (T1|H)P (H) + P (T1|R)P (R) = 0.95 · 0.95 + 0.15 · 0.05 = 0.91

P (T2) = P (T2|H)P (H) + P (T2|R)P (R) = 0.91 (for the same reasons)
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P (T1)P (T2) = 0.912 = 0.8281

whereas

P (T1∩T2) = P (T1∩T2|H)P (H)+P (T1∩T2|R)P (R) = 0.952 ·0.95+0.152 ·0.05 =
0.8585

so P (T1)P (T2) ̸= P (T1 ∩ T2, and therefore T1 and T2 are not actually inde-
pendent. Why not?

The problem is that the two tests are “entangled” by the fact that in real-
ity it’s always either a human doing both tests or a robot doing both tests,
whereas the P (T1)P (T2) term is implicitly including the nonsensical possibility
of e.g. doing the first test as a human and the second test as a robot.
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