
CS109A Week 5 Notes

Ian Tullis

February 1, 2022

I. Beepworld

The geometric, negative binomial, Poisson, and exponential distributions are all
intimately related. To better understand them, let’s imagine a very annoying
place: Beepworld.

Beepworld looks like the blank expanse from The Matrix or The Good Place,
except that there is a single smoke detector. Fire safety is important, even in the
featureless Beepworld! But it must not be that important, because the battery
is dying and the smoke detector is beeping.

It’s hard to tune out; it’s not even beeping at fixed intervals. As we listen, we
conjecture that each second, the smoke detector decides whether to beep: with
probability 0.1, it beeps, and with probability 1− 0.1 = 0.9, it does not.

Because we are stuck in Beepworld and literally have nothing to do but study the
beeping smoke detector, we figure we might as well ask some CS109 questions
about it. If this is Hell, we might as well do probability!

How long an expected window until the next beep?

First, let’s find the expected amount of time until the next beep. This will con-
sist of some nonnegative integer number of milliseconds with no beep, followed
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by one millisecond with a beep. So this amount of time follows a geometric
distribution: if X is the time in seconds until (and including) the next beep,
P (X = x) = (1 − p)x−1 · p. We know from the Week 4 109A notes that the
expectation of a geometric distribution is 1

p , so in this case, it is 1
0.1 = 10.

Notice that this same logic holds no matter when we ask the question! The
expected amount of seconds until the next beep is always 10.

Remember that “expected amount” means that if we were to repeat this ex-
periment infinitely many times, the average number of seconds until the next
beep would be 10. But this is not a guarantee that we hear a beep every 10
seconds, nor does it mean that the probability of hearing a beep in the next 10
seconds is 1

2 . We know from the geometric distribution that the probability that
we hear at least one beep in the next 10 seconds is P (X = 1)+ ...+P (X = 10),
because that first beep has to occur in one of those 10 seconds, regardless of
whether there end up being any other beeps later. This turns out to be ≈ 0.6513.

What is the expected amount of time until we hear a total of two more beeps?
One way to find this is to harness the awesome power of linearity of expec-
tation (see the Week 3 109A notes). Let X be the time in seconds until the
next beep, and let Y be the time in seconds from that first beep until the next
beep after that. Both X and Y have the same (geometric) distribution – again,
that expectation is always the same no matter when we ask the question – so
E[X + Y ] = E[X] +E[Y ] = 10 + 10 = 20.

Another option is to use the negative binomial distribution, which exists to
answer exactly this sort of question. I won’t dwell on the details here since the
negative binomial is not a huge focus in CS109, but you can find this distribu-
tion (and its expectation, etc.) on slide 17 of lecture 9. The amount of time X
until two beeps has a negative binomial distribution with p = 0.1, r = 2, and so
the expectation is r

p = 2
0.1 = 20, the same answer as before.

How many beeps do we expect in a certain window?

Now let’s ask a different question: given a time window of a particular size –
say, 20 seconds – what is the expected number of beeps?

One approach is to take the expectation of a sum of indicator random vari-
ables (109A Notes 3). Let B1, ..., B20 be the events corresponding to beeps at
seconds 1 through 20, and I1, ..., I20 be the corresponding indicator RVs. Then
the total number of beeps is I1 + ...+ I20, and the expected number of beeps is
E[I1+ ...+I20]. By linearity of expectation, this is E[I1]+ ...+E[I20]. Since the
expectation of an indicator variable is just the probability of its corresponding
event, each of these E[I1] values is 0.1, so the total is 2. This is consistent with
what we found before! If the expected amount of seconds needed to hear 2 beeps
is 20, the expected number of beeps in 20 seconds should be 2.
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Another approach is to observe that the number of beeps in a given window
has a binomial distribution: each of the 20 seconds is an independent “trial”
(n = 20), and the “success” probability (p) for each one is 0.1. Recalling (or
double-checking) that the expectation of a binomial distribution is n·p, we again
get 20 · 0.1 = 2.

II. Millisecond Beepworld

It occurs to us that a second is a pretty large chunk of time for an electronic
device. What if the smoke alarm actually decides every millisecond whether to
go off, but with a new beep probability p′ that keeps the overall rate of beeping
the same? (That is, 1 beep per 10 seconds, in expectation.)

Now it is possible that the smoke alarm might beep multiple times in the same
second, which could not have happened in Original Beepworld with its one-
second granularity. But the rules of the system are otherwise the same. In
particular, the number of beeps in 10 seconds is still governed by a binomial
distribution, but one with different parameters...

Problem 1.

(a) What is the value n′ for our new binomial distribution (for the number of
beeps in 10 seconds), now that our granularity is a millisecond?

(b) What is the value p′ for our new binomial (or, equivalently, geometric)
distribution, if the expected number of beeps per 10 seconds is still 1?

(c) What is the expected amount of time needed to hear one beep? Two
beeps? Give your answers in seconds, just for easier comparison with
Original Beepworld.

(d) Using the geometric distribution, write (but don’t evaluate) an expression
for the probability that we hear at least one beep in the next 10 seconds.
Your expression should be in terms of p′ and should include a summation.

(e) The expression in part (d) turns out to evaluate to ≈ 0.6321, which is
different from the value of ≈ 0.6513 that we found for Original Beepworld.
Why might we expect this value for Original Beepworld to be different
from – but not that different from – the value for Millisecond Beepworld?
(Feel free to skip this one – it’s tough to reason about!)

(f) Using the binomial distribution (or a similar method), find the probability
that we hear at least one beep in the next 10 seconds. (Hint: Rather than
a summation, use our typical trick for “at least one”, and a calculator.)

(g) Would you expect the answer to (d) and the answer to (f) to be the same?
Are they?
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Solutions to Problem 1.

(a) There are 10000 milliseconds (and thus 10000 separate “trials”) in 10

seconds, so n = 10000 .

(b) For the expected number of beeps per 10 seconds (10000 milliseconds) to

equal 1, we need n′p′ = 1. Therefore p′ = 1
n′ =

1

10000
. This also makes

sense intuitively: if we are allowing 1000 times as many trials, each one
needs to succeed 1

1000 -th as often for the expected number of successes to
stay the same.

(c) By the geometric distribution, the expected amount of milliseconds needed

to hear one beep is 1
p′ = 10000, i.e. 10 seconds . The expected amount of

milliseconds needed to hear two beeps is 1
p′ +

1
p′ = 20000, i.e. 20 seconds .

So these values have not changed, even though we changed the granularity.

(d) Using the geometric distribution, P (at least 1 beep in the next 10 seconds)

= P (at least 1 beep in the next 10000 milliseconds)

= P (X = 1) + ...+ P (X = 10000) =

10000∑
x=1

(1− p′)x−1p′

(e) If we compare the binomial distributions from Original Beepworld and
Millisecond Beepworld, for example, we notice that they are similar but
not identical:
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As a more concrete example, think of the distributions for flipping two
vs. four fair coins. Both have an expected value of np = n

2 heads, but
the distributions are not the same. As we flip more and more coins, the
distribution gets more and more of a classic binomial curve shape, and
the distributions with smaller n are almost like clunky, Minecraft-esque
approximations thereof.

(f) P (X ≥ 1) = 1 − P (X = 0) = 1 −
(
10000

0

)
(p′)0(1 − p′)10000 = 1 − 1 ·

0.999910000 ≈ 0.6321 .

(g) Because the geometric and binomial distributions are expressions of the
same underlying model of “trials”, with the same success probability, they
should (and do) give exactly the same result; neither is an approximation.

III. Continuous Beepworld

Many real-world phenomena, like the decay of radioactive atoms, do not oper-
ate on such large discrete time scales. We can try to model this by making the
Beepworld time granularity even smaller, all while keeping the expected number
of beeps at 1 per 10 seconds.

As we make this granularity arbitrarily tiny, the binomial distribution of the
number of beeps within a time window gets hard to work with: p becomes van-
ishingly small, n becomes enormous, and

(
n
x

)
becomes very hard to evaluate.

Fortunately, as we saw in lecture, this distribution approaches a limit that is
much easier to work with: a Poisson distribution.

Let’s try to use the Poisson to find the probability that we hear at least one beep
in the next 10 seconds. As always with Poissons, our first step is to find λ; as
detailed in the Week 4 109A notes, this depends on our choice of time window.
Here we are using a window of 10 seconds, and we already conveniently know
the rate is 1 beep per 10 seconds, so λ = 1.

Then the probability of no beeps (X = 0) is e−λλ0

0! = e−1 = 1
e , so the probabil-

ity of at least one beep is 1 − 1
e ≈ 0.6321, the same answer we kept seeing in

Millisecond Beepworld!

What does this tell us? The millisecond-level granularity was a pretty close
approximation to continuous time! So we could have just as well used a Poisson
distribution for Millisecond Beepworld. But it would not have been a perfect
approximation for Original Beepworld.

What about our geometric distribution for the amount of time X until the
next beep? Fortunately, this also approaches a limit as the time unit grows
smaller: the exponential distribution. Specifically, we have
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f(X = x) = λe−λx,

where λ is (conveniently enough) the same λ from the Poisson distribution,
with the same meaning.

Remember that unlike a probability mass function (for a discrete variable),
evaluating a probability density function (for a continuous variable) at some
value X = x does not give the probability that P (X = x). This is because for
a continuous variable, it does not even make sense to ask, for example, “what
is the probability that X = 5?” If we imagine arbitrarily small time units, the
chance of it taking exactly this amount of time becomes vanishingly close to 0.

Rather, to get a probability out of a PDF, we have to integrate under a re-
gion of the function. We can only ask questions like “what is the probability
that X is between 4.5 and 5.5?” or “what is the probability that X is greater
than 7?”, and answer them by taking a definite integral of the PDF from 4.5 to
5.5, or from 7 to infinity.

Now our running example question of “what is the probability that we hear
at least one beep in the next 10 seconds?” is equivalent to “what is the proba-
bility that an exponential random variable is between 0 and 10?”1 But just as
with the Poisson distribution, we have to be careful with how we define λ. If
we are looking at an interval of 1 second, then our rate λ is only 0.1 expected
beep per second, and so the answer is∫ 10

0
λe−λxdx =

∫ 10

0
0.1e−0.1xdx.

In general, the definite integral of ekxdx (for some constant k) is 1
ke

kx, so our an-
swer here is 0.1[ 1

−0.1e
−0.1x]100 = 0.1(−10e−0.1·10− (−10e−0.1·0)) = 0.1(−10e−1+

10e0) = 1− 1
e ≈ 0.6321, as ever.

On the other hand, if we decide use a window of 10 seconds – that is, if we

say that “1” means 10 seconds – then λ = 1, and the expression is
∫ 1

0
e−xdx.

This yields the same answer, but it is perhaps easier on our brains to keep 1 as
meaning “1 second”!

Let’s also think about the expectation of the exponential distribution. The
expectation of a discrete random variable is a weighted average over the values
it can take on, where the weights are the probabilities of those values. The
expectation of a continuous random variable is conceptually the same, except
now there are (probably) arbitrarily many values it can take on. So instead of∑

all possible x x · p(x), we now have
∫
support of x

x · f(x)dx.

1Normally I am careful about specifying inclusive or exclusive limits on ranges, but for
continuous variables, it doesn’t matter. Because P (X = 0) = 0 and P (X = 10) = 0,
P (0 ≤ X ≤ 10) is the same as P (0 < X < 10).
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The exponential distribution is supported on (i.e., can take on values in) the
range from 0 to infinity, so its expectation is∫∞
0

x · f(x)dx =
∫∞
0

λxe−λxdx

This is not an integral that Chris would expect you to handle on an exam,
so feel free to skip this paragraph! We can solve it via “integration by parts”,
i.e. the

∫
udv = uv −

∫
vdu trick. Perhaps after some trial and error, we pick

u = λx, dv = e−λxdx, and therefore du = λdx and v = − 1
λe

−λx. Now we have
uv −

∫
vdu = −xe−λx +

∫
e−λxdx = −(x + 1

λ )e
−λx. Evaluating this from 0 to

infinity gives 0−−(0 + 1
λ ) =

1
λ .

So the expectation of an exponential distribution with parameter λ is 1
λ . It

makes sense that if we have a rate of 1
10 beeps per minute, for instance, then

we expect to have to wait 10 minutes to hear a beep. Again, note the strong
parallel with the geometric distribution with parameter p and expectation 1

p .

Problem 2. Here’s some practice relating exponential and Poisson distri-
butions. Suppose the random variables X1, X2, X3, X4 are independent, and
each has an exponential distribution with the same parameter λ = 2. Let
Y = X1 +X2 +X3 +X4. First let’s warm up with some properties of this new
distribution:

(a) Is it true that fY (y) = fX(y4 )? (i.e. that the value of the PDF of Y at
Y = y is the value of the PDF of X at X = y

4 )

(b) What is E[Y ]? (Hint: do not try to use an integral!)

(c) Show that fY (0) = 16. (Hard, and involves thinking about joint distribu-
tions, which we’ll cover later – feel free to skip.)

(d) The answer to (c) is larger than 1. Why does it not violate rules for
probability distributions when a PDF exceeds 1?

(e) What is P (Y = 0)?

Now, in parts (f)-(h), suppose we want to find the exact probability that
Y ≤ 2, without using approximations.

(f) Explain how to envision a Poisson-distributed variable Z such that Y ≤ 2
corresponds exactly to Z ≥ 4.

(g) What would be the rate λ′ of that Poisson distribution?

(h) Using that Poisson distribution, what is the exact value of P (Y ≤ 2)?
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Solutions to Problem 2. If we try to solve this just in terms of the sum of
exponentials, it gets pretty hairy to think about! Nor is a normal distribution
a good approximation for the sum of a few exponentials. A sum of independent
and identically distributed exponentials does have something called a gamma
distribution, but this is a niche topic in CS109.

(a) No . Y is the sum of four independent exponential random variables, not
the result of taking one exponential random variable and multiplying it
by 4. However, if Y were defined as 4X, this statement would be true.

(b) By linearity of expectation, E[Y ] = E[X1 + X2 + X3 + X4] = E[X1] +

E[X2] +E[X3] +E[X4] =
1
2 + 1

2 + 1
2 + 1

2 = 2 .

(c) Since exponential distributions cannot take on negative values, we can
only have Y = 0 if X1, X2, X3, X4 all equal 0. The Xis are independent of
each other, so fY (0) = fX1(0)fX2(0)fX3(0)fX4(0). Since all of X1, ..., X4

are identically distributed, this equals (fX1
(0))4. By the exponential dis-

tribution, fX1
(0) = λe−λx = 2e−2·0 = 2, so fY (0) = 16.

(d) A PDF can take on values larger than 1, since values of PDFs are not
probabilities. However, the PDF must integrate to 1, and be nonnegative
everywhere.

(e) For a PDF, for any specific value x, P (X = x) = 0 .

(f) The exponential distributions X1, ..., X4 can each be viewed as measur-
ing the time until some occurrence happens (following the previous one,
in the case of X2 through X4.) Y is the total time for all four to happen
back-to-back. So Y ≤ 2 means that all four occurrences happened by (or
before) the 2 second mark.

Consider a Poisson distribution for the number Z of these occurrences
in a 2-second window, with the “clock” for one occurrence starting when
the previous one stops. (This is called a “Poisson process”.) Then Y ≤ 2
means that four occurrences happened within the 2-second window. And
maybe some other occurrences happened after that as well! So Y ≤ 2
corresponds exactly to Z ≥ 4 for this Poisson distribution.

(g) Since λ = 2, the expected time for each of X1, ..., X4 is 1
2 = 0.5 seconds.

Then we would expect 4 events in 2 seconds, so λ′ = 4 for our Poisson
distribution.

(h) Since P (Z ≥ 4) = P (Z = 4) + P (Z = 5) + ... ad infinitum, it is easier
to find P (Z = 0)+P (Z = 1)+P (Z = 2)+P (Z = 3). So the final answer is

1−
∑3

k=0(
e−44k

k! ) = 1− e−4(1 + 4 + 8 + 32
3 ) = 1− 71

3e4
.

For many of us, including myself, coding is believing. I got the result
0.56657, which is very close to the true value of 0.56653.
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# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html

from scipy.stats import expon

total = 0

TRIALS = 100000000

for i in range(TRIALS):

# in scipy, scale = 1/lambda

r = expon.rvs(scale=0.5, size=4)

if sum(r) <= 2.0:

total += 1

print(total / TRIALS)

IV. CDFs and Inverse CDFs

Every PDF f(x) has a corresponding CDF F (y), which is defined as
∫ y

smallest supported value
f(x)dx.

(We use y to make it clear that we are referring to a specific value on the x-axis,
and not to the x variable that we are integrating over.) For example, for the
exponential distribution, the smallest supported value is 0, so the CDF is

F (y) =
∫ y

0
λe−λxdx = λ[− 1

λe
−λx]y0 = −eλ·y + eλ·0− = 1− eλy.

The point of the CDF is to do the integration once so that we never need
to do it again. If we want P (0 ≤ X ≤ 3), now we can simply take F (3). If we
want P (1 ≤ X ≤ 2), we have to be a bit sneakier: first take F (2), then get rid
of the unwanted area below X = 1 by subtracting off F (1).

Although it is not a major part of CS109, it is often useful to find the in-
verse CDF as well. As with other inverse functions, the inverse CDF, F−1(y)
tells us: what value of y do I need to pick so that F (y) = y? We can find an
expression for F−1(y) by swapping F (y) and y in the CDF and rearranging.
For example, for the exponential distribution:

F (y) = 1− e−λy swap!

y = 1− e−λF−1(y)

1− y = e=λF−1(y)

−λF−1(y) = log(1− y)

F−1(y) = − log(1−y)
λ

So what? We can use this to quickly draw a random value from an exponential
distribution! All we need to do is choose a uniformly random value y in [0, 1] –
which you can think of as being a percentile value – and take F−1(y). For in-
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stance, if we happen to pick y = 0.5, we find that F−1(y) = − log(1−0.5)
λ = log(2)

λ .
Non-coincidentally, this is the median of the distribution; 0.5 is the 50th per-
centile.

Consider the alternative of how we would sample a random value from a contin-
uous distribution. With a discrete distribution, we can find the probability of
every value, but here there are infinitely many values and we can’t enumerate
them all! We still have to choose x proportional to f(x), so essentially we want
to throw a dart uniformly at random at the area under the curve of the PDF.
That is intractable, so we instead imagine integrating along the curve and stop-
ping at some fraction of the way, where that fraction is chosen uniformly in [0,
1]. This is exactly what the inverse CDF does for us. (You may find the inverse
CDF especially useful on part of Homework 3, Problem 2!)

Unfortunately, it is not always tractable, or even mathematically possible, to
compute an inverse CDF... but when one exists and is easy to find, it can be a
valuable tool.

Problem 3. Let’s practice with a new distribution of the form f(x) = kx1/2,
with k being some unknown constant. Suppose that we declare that the distri-
bution is supported on the range [0, 1].

(a) f(x) is defined on [0,∞), so why can’t we support this distribution over
that entire range?

(b) What must k be in order for f(x) to be a valid probability distribution?
(i.e. for f(x) to integrate, over its support, to 1.) Use this value in the
distribution in the remaining parts.

(c) Let X be a variable with this distribution. What is E[X]?

(d) What is E[X2]?

(e) What is Var[X]? (Hint: use the results of (c) and (d).)

(f) What is the CDF, F (y)?

(g) What is the inverse CDF, F−1(y)?

(h) What is the median of the PDF? Is it above or below 0.5, or exactly 0.5?
Does this match your intuition based on the shape of f(x)?

(i) Write Python code to sample a value from f(x). As in Homework 3,
Problem 2, your only call should be to random.uniform(0, 1).

(j) What does this distribution look like? Can you think of some potential
real-world application for this distribution, given its qualities? (This is
open-ended; I don’t have a specific answer in mind.)

10



Solutions to Problem 3.

(a) As x gets arbitrarily large, f(x) also gets arbitrarily large, albeit at a
slower rate because of the square root. So we can’t integrate over this
entire range; the area under the curve would be infinite, and regardless of
the value of k, that infinite area could never equal 1.

(b) We want
∫ 1

0
kx1/2dx = 1. The left side is [ 2k3 x3/2]10 = 2k

3 13/2− 2k
3 03/2 = 2k

3 .

For this to equal 1, we need k =
3

2
. So we will use f(x) = 3

2x
1/2 from

here on out. Here’s what our distribution looks like:

(c) To get E[X], we take
∫ 1

0
xf(x)dx =

∫ 1

0
x· 32x

1/2dx =
∫ 1

0
3
2x

3/2 = [ 35x
5/2]10 =

3

5
.

(d) Similarly, to getE[X2], we take
∫ 1

0
xf(x)dx =

∫ 1

0
x2· 32x

1/2dx =
∫ 1

0
3
2x

5/2 =

[ 37x
7/2]10 =

3

7
.

(e) Using Var[X] = E[X2]− (E[X])2: 3
7 − ( 35 )

2 =
12

175
.

(f) We get the CDF by integrating the PDF up to an arbitrary point y.

F (y) =
∫ y

0
3
2x

1/2 = [x3/2]y0 = y3/2 .

(g) To find the inverse of F (y) = y3/2, we swap F (y) and y and replace F (y)
by F−1(y): y = F−1(y)3/2. Then, raising both sides to the 2/3 power, we

have F−1(y) = y2/3 .
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(h) An easy way to get the median is to evaluate the inverse CDF at 0.5.

This gives us 0.52/3, i.e.
1

22/3
, which is about 0.63. Looking at the

graph above, this is plausible: most of the area under the curve is toward
the right, so in order to cut the area exactly in half, the median also needs
to be toward the right.

(i) Look how nice this is, thanks to the magic of the inverse CDF!

import random

def sample():

r = random.uniform(0, 1)

return r**(2/3)

(j) The distribution assigns more weight to values closer to 1. One possible
use of this would be for, e.g., modeling scores (as a fraction of 1) on a
problem set. But there are probably more interesting natural situations
where the probability of x (in the range (0, 1)) is proportional to the
square root of x.

Appendix: Beepworld Simulator

This works on my Mac. beep.wav is some file in the same directory. This is
not quite accurate since it takes a nontrivial amount of time to actually play
the sound, but it simulates the irritating sporadic nature of the beeping pretty
well!

import os, random, time

while True:

time.sleep(1)

if random.uniform(0, 1) <= 0.1:

os.system("afplay beep.wav")
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