
Additional midterm practice problems for CS109

Disclaimer: You should prioritize official CS109 review materials (past exams, home-
works, sections) first! These problems are not guaranteed to match actual CS109 exam
problems in style, scope, or difficulty (mine probably skew harder, and some of them in-
volve calculations that would be too onerous by hand). Hence “midterm practice problems”
rather than ”practice midterm problems”. These are unofficial and were written for Ian’s
CS109A class for Winter 2022; anyone is welcome to share them around, but please direct
any questions about the problems to itullis@stanford.edu. Star ratings: *, ** = bread
and butter, *** = extra thought required, **** = stretch

1 Revenge of the past problems

(a) (*) This problem is based on Section 4, Problem 2, but you should not look at that
problem while solving this one! Assume that people who are suffering from a certain
illness (which is not COVID because goodness knows we’ve had to think about that
enough) have a temperature distributed as N (µ = 101, σ = 1). However, people who
don’t have the illness have a temperature distributed as N (µ = 98, σ = 1).

Suppose that we observe a person with a temperature of 101 or higher. Why shouldn’t
we necessarily conclude that the person has the illness, even though 101 clearly has a
larger probability density in the “illness” distribution than in the “non-illness” distrib-
tion? (I.e., what other piece of information do we need before making our decision?
The intended answer is not that there are other diseases in the world too, although
that is a reasonable point... but here, suppose that we have somehow narrowed it down
to the person either having that illness or having no illness.)

(b) (**) In Homework 3, Problem 3, when testing for measles (in a population with a 5%
rate of measles), we tested pooled samples of 6 people at a time, then tested them
all individually if there was a positive pooled test. Suppose that we replaced 6 with
N . What is the smallest value of N (greater than 1, of course) for which this strategy
becomes worse (in terms of expected total number of tests) than just testing everyone
individually at the outset? (Use e.g. Wolfram Alpha for calculations.)

(c) (***) In Homework 3, Problem 1, suppose that the question had used a fair coin, and
11 flips. Can you see how to immediately answer the question “what is the probability
that the number of heads is odd?” without doing any math? (Optional **** extension:
what if it were an even number of flips, like 12?)

(d) (**) On the fall 2021 midterm, Problem 3ab, we observed a 0 degree (non)-movement
and then a 16 degree movement. Suppose that we had started with the same prior of
3
4
but made those observations in the opposite order, i.e., we saw 16, then updated our

estimate and used that as the new prior, and then saw 0, and updated our estimate
again. Would you expect the final estimated probability to be different? Is it?
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2 2-parameter distribution, 1-parameter approximation?

(*) When we use a normal distribution to approximate a binomial distribution, we take the
mean µB and variance σ2

B of the binomial, and then use those directly as the mean µN and
variance σ2

N of the normal. (These subscripted variables are not something we’ve seen in
class; the subscripts are just there for clarity.)

But when we use a Poisson approximation, it’s a bit more awkward since the Poisson dis-
tribution only has the single parameter λ as both its mean and variance. So we have to
hope that both µB and σ2

B are close to λ, which also implies that we need µB and σ2
B to

be very close to each other. When (in terms of the n and/or p parameters of the binomial
distribution) would you expect this to be true? Does this fit your intuition about when it’s
OK to use a Poisson approximation to a binomial?

3 Central “Express”way, except when it isn’t!

As usual, I am running late, so I leave home 25 minutes before our CS109A class starts.
Suppose that there are 16 traffic lights on my drive from home to campus. Also suppose
that if I hit only green lights, it would take me 20 minutes to reach campus. However:

• Each light has (independently) a probability of 0.3 of being red.

• For each light (independently), the amount of additional time I have to wait at that
light is normally distributed with mean 60 seconds and standard deviation 15 seconds.

(a) (*) What is the expected amount of time it will take me to reach campus?

(b) (***) What is the exact probability that I make it to campus in time to teach class?
(Assume, somewhat unrealistically, that I teleport instantaneously from my parking
spot on campus to our classroom, which is obviously not true since it’s up a ton of
stairs.) Your answer can involve a summation and Φ.

You can use the fact that the sum of n independent N (µ, σ2) is itself a normal distri-
bution N (nµ, nσ2); we haven’t quite gotten there in lecture yet. So if I hit 3 lights,
for instance, my total waiting time is distributed as N (3 · 60, 3 · 152). However, this
question does test something that could be on the midterm! What distribution can
you use for the number of lights I hit?

(c) (***) Suppose that the traffic lights are not independent, in some way that guarantees
that I will never hit two red lights in a row, but that the probability of hitting each
one is still 0.3 overall. (As one example, suppose that with probability 0.5, each odd-
numbered light is red with probability 0.6 and even-numbered lights are never red,
and with probability 0.5, each even-numbered light is red with probability 0.6 and
odd-numbered lights are never red.) Would the answer to (a) to be larger, smaller, or
the same, or would it depend on the specific way in which these conditions hold?
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4 World Series of Baseball

The World Series is only 7 games, which is not enough to decide which of two teams of
similar ability is actually better. But the format is presumably designed to create drama and
excitement, not to select the worthiest champion!

(**) Suppose that in any given World Series game, the Dodgers have a true probability
of 0.51 of beating the Giants1, independently of the results of any other games. What is the
minimum odd number of games that the World Series would need to have in order for there
to be less than a 1% chance of the Giants winning a majority of the games? (The number
of games must be odd to avoid an overall tie.) Use a normal approximation. You may
(and should) use the fact that Φ(2.3263) = 0.99.

5 Hit point insecurity

In Dungeons and Dragons, I always dread rolling dice to determine my character’s hit points.
What if I get unlucky and roll a 1? What if someone else gets so lucky that their sneaky
rogue has as many hit points as my beefy fighter?

Suppose that I determine my fighter character’s hit points (HF ) by rolling ten 10-sided
dice and adding them together, and my friend determines her rogue character’s hit points
(HR) by rolling ten 6-sided dice and adding them together.

(a) (*) What is E(HF )?

(b) (**) What is V ar(HF )?

(c) (****) What is the exact probability that my friend’s rogue has exactly the expected
number of hit points for a fighter, i.e., P (HR = E(HF ))? Your answer must be a single
term with a single

(
n
k

)
type expression in the numerator.

(d) (***) Suppose that my Dungeon Master allows me to reroll any 1s that come up when
I roll my ten 10-sided dice, but only once each (i.e. even if a rerolled 1 comes up 1
again, I have to keep that 1). What is E(HF ) in this case?

(e) (***) Suppose that my Dungeon Master allows me to reroll any 1s that come up when
I roll my ten 10-sided dice, and then keep rerolling any 1s, and so on, until there are
no more 1s. What is E(HF ) in this case?

1Apologies to Giants fans.
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6 Not quite six sigma

(a) (*) In a normally distributed population, what fraction of the population do you equal
or exceed if you are 1 standard deviation (σ) above the mean? 2σ? deviations? 3σ?
(This wouldn’t be a midterm question, because it can’t be hand-solved, but: do you
know how to find this info? I do think it’s useful (for life) to memorize these numbers...)

(b) (*) Tests like the SAT have often been scaled based on an assumed normal distribution
with a mean of 500 and a standard deviation of 100. However, scores are reported
rounded to the nearest 10-point increment. What fraction of test-takers would you
expect to earn a score of 670? (This isn’t a trick question where the answer is 0...
what range of the distribution does this actually represent?)2 You can leave your
answer in terms of Φ expressions.

7 Critical success and critical failure

(a) (**) Suppose you roll a 20-sided die until you see a 20. What is the expected number
of rolls that this will take?

(b) (**) Suppose you roll 20 20-sided dice. What is the probability that you will see at
least one 20?

(c) (***) Suppose you roll a 20-sided die until you have seen both at least one 20 and at
least one 1. What is the expected number of rolls that this will take? (Hint: consider
breaking the process down into two phases.)

(d) (****) Suppose you roll 20 20-sided dice. What is the probability that you will see at
least one 20 and at least one 1? (This is hard! Feel free to leave your answer in terms
of summations etc. Also consider breaking the problem down into cases that you know
are mutually exclusive and exhaustive, so that you don’t have to worry about trying
to correct for double-counting.)

8 An easy mistake

(**) When we roll 5 6-sided dice, the probability of seeing two of one number and three of

a different number – e.g., 52522 – is
6·5·(52)

65
. Why is it that when we roll 4 6-sided dice, the

probability of seeing two of one number and two of a different number is not
6·5·(42)

64
?

BEST OF LUCK ON THE MT! Solutions to these problems begin on the next page...

2This question should not be taken as an endorsement of standardized testing, which has its problems,
to say the least. Nor do one’s test scores determine one’s worth in any way. That said, you should still try
to do your best on the midterm!
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1. (a) The issue is that we do not know how common the illness is overall. Suppose that
the illness is extremely rare, occurring in, e.g., 0.1% of the population. But we
would expect about 0.13% of the non-illness population to have this temperature
or higher! (This comes from evaluating the normal CDF with µ = 98, σ = 1,
x = 101, and then subtracting the result from 1 because we want the area to
the right of that point, under the long tail of the curve.) So in this case, the
fraction of the population with the illness is pretty similar to the fraction of the
population that doesn’t have the illness but just happens to have that high of a
temperature. Therefore, it’s hard to say which of those two groups the person is in!

The takeaway point is that we need to know the overall frequency of the
illness to make a sensible prediction. Notice that the section problem had to give
you this piece of information (it’s 20% in that case). A similar situation arose in
that problem, where even though 100 “looks” much more like a temperature from
the group with the flu, the proportion of people with the flu also factors into the
calculation, and so the answer ends up actually being not far off from 50%.

(b) On the homework, we found that the expected number of tests was 1(0.956)+(1+
6)(1−0.956). Here, we replace 6 with the more general N : 1(0.95N)+(1+N)(1−
0.95N). The pooled-test strategy becomes worse once that quantity exceeds N
(which is the number of tests we would need if we skipped the pooled test and just
tested everyone up front). So, to get the threshold N above which the pooled-test
strategy is worse, we solve

1(0.95N) + (1 +N)(1− 0.95N) = N

0.95N + 1− 0.95N +N −N · 0.95N = N

1 = N · 0.95N

Using Wolfram Alpha, we find that N ≈ 1.05 or N ≈ 87.08. Both of these
are thresholds, but only one is the kind we want (where the pooled test goes from
useful to not useful).

Let’s check for N = 87: 1(0.9587) + (1 + 87)(1 − 0.9587) ≈ 86.997 < 87 - still
good!

And for N = 88: 1(0.9588) + (1 + 88)(1 − 0.9588) ≈ 88.036 > 88 - no longer
good!

So the answer is 88 .

(c) A binomial distribution with p = 0.5 is always symmetric. To see why, consider
that when p = 0.5, regardless of the value of n, P (X = x) =

(
n
x

)
0.5x(1−0.5)n−x =
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(
n
x

)
0.5x+n−x =

(
n
x

)
0.5n, and P (X = n − x) =

(
n

n−x

)
0.5n−x(1 − 0.5)n−(n−x) =(

n
n−x

)
0.5n−x+x =

(
n

n−x

)
0.5n. Since as a rule,

(
n
x

)
=

(
n

n−x

)
, these quantities are the

same. (As a reminder about why that last fact is true, picking x out of n things
is the same as choosing which n− x of n things to leave behind.)

Here’s the distribution for n = 11, p = 0.5. (The values for x = 0 and x = 11 are
nonzero, but too small to show up here.):

If we look at the bars for the odd values of x (1, 3, 5, 7, 9, 11), they are the same
as the bars for the even values of x, looking the other way (10, 8, 6, 4, 2, 0). So

the two sets of bars must have the same sum, specifically,
1

2
.

What about for n = 12?

Now we have a problem: we can no longer make the same symmetry argument.
For instance, the bar for x = 6 does not have a counterpart in the odd numbers.
Yet, probably surprisingly, it is still true that the answer is 1

2
.
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Here’s an intuitive argument about why this is true. Consider making 12 coin
flips and keeping track of just the parity (odd or even) of how many heads we
have seen. We start with 0 heads, which is even parity. Every time we make a
flip, we have a 50% chance of changing our parity and a 50% chance of leaving it
the same. So after 1 flip, we have a 50% chance of having an even parity and a
50% chance of having an odd parity. After 2 flips, we still have a 50% chance of
an even parity: 25% of the time, we were at even and we stayed there, and 25%
of the time, we were at odd but then changed parity to even. This logic holds
throughout the entire sequence of flips, regardless of whether n is odd or even.

(d) I am hoping that you expected the answer to stay the same. It would look really
bad for Bayesian statistics if seeing the observations in a different order somehow
changed our overall conclusion! But we should check:

Initial estimate: P (can hear sound) = 3
4

After observing 16:

P (can hear sound|observe 16) = P (observe 16|can hear soundP (can hear sound
P (observe 16)

= P (observe 16|can hear sound)P (can hear sound)
P (observe 16|can hear sound)P (can hear sound)+P (observe 16|can’t hear sound)P (can’t hear sound)

=
0.20· 3

4

0.20· 3
4
+0.08· 1

4

= 0.15
0.17

= 15
17
.

Then, after observing 0, we use our new estimate of 15
17

for the prior probabil-
ity P (can hear sound).

P (can hear sound|observe 0)

= P (observe 0|can hear sound)P (can hear sound)
P (observe 0|can hear sound)P (can hear sound)+P (observe 0|can’t hear sound)P (can’t hear sound)

=
0.08· 15

17

0.08· 15
17

+0.40· 2
17

=
6
85
10
85

=
3

5
.

So even though we were very confident (15
17
) that the baby could hear the sound

after the first observation, the second observation drops that probability to 3
5
, the

same as the original answer.

2. The mean and variance of a binomial distribution with parameters n and p are np and
np(1 − p), respectively. (A good way to be able to rederive the variance is to think
of a binomial distribution as a sum of n Bernoullis, and note that the variance of an
individual Bernoulli trial is p(1− p).)

If we want np ≈ np(1 − p), then we see that we want 1 − p ≈ 1, i.e. p is very
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close to 0. This makes sense – the Poisson distribution is a binomial taken to the limit
in which the number of trials is very large and the success probability is very small.
This also matches the rule of thumb that Poisson approximations work well when p is
small.

If we try to use a Poisson approximation when e.g. p = 0.5, we will probably find
that it does not work very well. For instance, if we try to use a Poisson to model the
number of heads in 100 fair coin flips given that the expected number is 50, and we
ask about P (X = 40), we get e−505040

40!
, which is ≈ 0.021. But the actual answer is(

100
40

)
(0.5)40(1− 0.5)60 ≈ 0.011. So the Poisson approximation is way off!

3. (a) Each traffic light has an 0.3 probability of adding an expected 60 seconds of delay,
so it adds 18 seconds in expectation. By linearity of expectation, the sum for all
16 lights is 288 seconds = 4 minutes, 48 seconds. So I will on average take 24 : 48
to reach campus, which is cutting it close!

(b) Suppose that I hit n lights. Then the total delay is the sum of n independent and
identically distributed N (µ = 60, σ2 = 225) random variables. Per the rules for
adding independent normal distributions, as given in the problem, the total delay
is N (µ = 60n, σ2 = 225n). Then the probability that I make it to campus on
time (i.e. that the delays are 300 seconds or less) is Φ(300−60n√

15n
). Since this delay

time is continuous, there is no need for a continuity correction.

However, the number of lights I hit is binomially distributed: P (N = n) =(
16
n

)
(0.3)n(0.7)16−n. The distribution of the total delay depends on this value, so

it is:

0.716 +
16∑
n=1

(
16

n

)
(0.3)n(0.7)16−nΦ(

300− 60n√
15n

) .

The separate 0.716 term is there because we can’t have the summation start at 0,
or we would have a division by 0 in the Φ term. In that case, the Φ term wouldn’t
even make sense, because there would be no distributions involved! If I hit no red
lights, then I always make it on time.

Observe that earlier in the summation (for small values of n), the Φ part will
be very close to 1 (since there are so few lights that they can’t possibly cause
enough of a delay), and later in the summation, the Φ part will be very close to 0
(since there are so many lights that I can’t possibly avoid being too delayed) and
the binomial part will be close to 0 (since it is unlikely to see so many red lights,
given that they are individually uncommon). If we do the math, it turns out that
within the summation, only the n = 1 through n = 4 terms really matter.

(c) Linearity of expectation holds regardless of the independence or nonindependence

8



of the individual traffic lights; notice that the argument in (a) never invoked
independence. So the answer is exactly the same regardless of the exact way the
non-independence manifests.

4. Let W be a random variable representing the number of wins the Giants (not the
Dodgers) get in n games, for some value of n that we have yet to find. The true dis-
tribution of W is binomial: P (W = w) =

(
n
w

)
( 49
100

)w( 51
100

)n−w. Per the usual formulas,
the mean and variance are np = 49n

100
and np(1 − p) = 2499n

10000
, so we will use those as µ

and σ2 in our normal approximation.

Then the probability that the Giants win over half the games is

P (W > n
2
) = 1−Φ(

n
2
− 49n

100√
2499n
10000

). Note the absence of a continuity correction, even though

the number of wins is a discrete value (and there are also no ties in the World Series!
See Rule 7.02(a) Comment in the MLB Official Baseball Rules.) This is because we are
specifically assuming that n is odd. Suppose, for example, that n = 7; then values of
3.4 and 3.6 in continuous-land would already fall into the 3 and 4 buckets, respectively,
in discrete-land, which is exactly what we want.

For the above probability to be 0.01, we need Φ(
n
2
− 49n

100√
2499n
10000

) = 0.99. Using the pro-

vided piece of information about Φ, we know that
n
2
− 49n

100√
2499n
10000

= 2.3263. Solving this for n

(which involves squaring to get rid of the
√
n and then using the quadratic equation

– again, you would probably not have to do this by hand on an exam, and I just used
Wolfram Alpha), we find that n ≈ 13523.8. Because we are requiring n to be odd,
the next largest odd value is 13525 . Since Ian eats at least one chocolate malt per
baseball game, that’s a lot of chocolate malts, especially if the Series makes it all the
way to that crucial game 13525...

Let’s double-check that that makes sense. The mean is 6627.5 and the variance is
3379.8975. The probability that the Giants win more than half the games in the series
– i.e. 6762.5 – is 1− Φ(6762.5−6627.5√

3379.8975
) = 1− Φ(2.322) = 0.01.

What is the real answer without the approximation? We want the smallest odd n
such that P (WGiants > ⌈n

2
⌉) =

∑n
w=⌈n

2
⌉
(
n
w

)
( 49
100

)w( 51
100

)n−w < 0.01. This was extremely

painful for my computer to check in Python (check out the Decimal library if you need
to work with gigantic factorials, and consider using PyPy), but it found the answer
13527. So the normal approximation was very close! (and the error probably came
from how I provided 2.3263 in a truncated form, not from the failure of the Central
Limit Theorem)

5. (a) For a single roll R, the expected value E(R) is 1+2+...+10
10

= 11
2
. So E(HF ) is 10

times that, i.e., 55 .
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(b) We can use V ar(R) = E(R−E(R))2. The differences between 1, 2, ..., 10 and the

mean are−9
2
,−7

2
,−5

2
,−3

2
,−1

2
, 1
2
, 3
2
, 5
2
, 7
2
, 9
2
. So E(HF−E(HF ))

2 =
(− 9

2
)2+(− 7

2
)2+...+( 9

2
)2

10
=

33
4
. Then (because the rolls are i.i.d) the variance is 10 times that:

330

4
= 82.5.

Alternatively, for our single roll R, we could use V ar(R) = E(R2)− E(R)2. The
first term is 1+4+...+81+100

10
= 77

2
. Then V ar(R) is 77

2
− (11

2
)2 = 33

4
as before.

(c) This is tricky, but we can observe that in order for the rogue to get exactly 55
out of the possible 60 hit points, my friend must roll something close to all sixes,
but with exactly 5 one-point deductions distributed among the ten dice. We can
safely use the divider method here because even if all five deductions end up on
the same die, this is still a valid result (a roll of 1). So we need to distribute 5
things among 10 buckets, and per the usual divider method formula, there are(
5+10−1
10−1

)
=

(
14
9

)
ways to do so.

This gives us the event space, and the sample space is all ways of rolling the
10 dice: 1010. (Notice that in both the numerator and the denominator, the order

of the rolls matters.) So the overall answer is

(
14
9

)
1010

, which is very small (about

1 in 5 million).

Remark : This would not have worked with 54, for instance, since then the divider
method could potentially assign all six deductions to the same die, which is not
possible.

(d) As usual, let’s start by thinking about just one die roll. 9
10

of the time, we keep
the original value on the die, and the other 1

10
of the time, it is like a single new

standard roll. Therefore the expected value of the single die is 1
10
(2)+...+ 1

10
(10)+

1
10
(E(R)) = 54

10
+ 1

10
(11
2
) = 119

20
. Then E(HF ) =

119

2
= 59.5. This is a noticeable

improvement over the mean of 55 without the DM’s generosity.

(e) Now when we get a 1, it is like we are beginning the entire rolling process over
for that die, so we can write a recursive expression for a single die: E(R) =
54
10
+ 1

10
E(R). Solving for E(R), we find that it equals 6, so E(HF ) = 60 . Allowing

those infinite rerolls doesn’t get us much more than the single reroll in part (d);
intuitively, this is because multiple rerolls are so rare.

6. (a) We can get these values from the course reader’s Gaussian CDF calculator: they
are Φ(1),Φ(2),Φ(3), which are 0.8413, 0.9772, 0.9987 .

(b) 670 would correspond to anything between 665 and 675; anything just lower
than 665 would be rounded to 660, and anything just higher than 675 would be
rounded to 680. So we want the integral from 665 to 675 of a normal distribution
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with mean 500 and standard deviation 100. As usual, we don’t actually do this
integral, but instead frame it as the difference between two evaluations of the

CDF: Φ(
675− 500

100
)− Φ(

665− 500

100
) , which is ≈ 0.9599− 0.9505 ≈ 0.0094.

7. (a) Because we want the total number of trials until one success, this is a geometric
distribution with p = 1

20
. The expectation for a geometric distribution is 1

p
, so

here it is 1
1
20

= 20 .

(b) The probability of seeing at least one 20 is 1 minus the probability of seeing no
20s, i.e., every roll comes up something other than 20. That probability is (19

20
)20,

so the answer is 1− (
19

20
)20 .

We implicitly used a binomial distribution there, and we would get the same
answer by using one directly, with n = 20, and p = 1

20
being the probability of

rolling a 20 on any given roll: 1− P (X = 0) = 1−
(
20
0

)
( 1
20
)0(19

20
)20.

(c) Now we can’t use a geometric or negative binomial distribution directly, even
though the situation is in the same ballpark. Per the hint, let’s think about two
phases: the first phase, when we are trying to see our first 1 or 20 (it doesn’t
matter which we encounter first), and the second phase, when we are trying to
see our first of the two numbers that we don’t already have.

The first phase is modeled by a geometric distribution, but with a success prob-
ability of p = 2

20
= 1

10
, since either a 1 or a 20 ends this phase. The expected

number of rolls for this phase is 1
1
10

= 10.

The second phase is also a geometric distribution, but now the success proba-
bility is down to 1

20
, since there is only one number we still need. (During this

time, we might see additional copies of the number we already have.) The expec-
tation here is 20 rounds, as before.

Therefore the overall expectation is 10 + 20 = 30 . We can add these because of
linearity of expectation, and also because the two phases have been set up to be
clearly non-overlapping.

(d) This is hard to solve directly, but we can break it up into four mutually exclusive
and exhaustive cases:

i. There are no 1s or 20s.

ii. There is at least one 1, but there are no 20s.

iii. There is at least one 20, but there are no 1s.

iv. There is at least one 1 and at least one 20.
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Case i. is similar to part (b), but with each die having a 18
20

probability of not
coming up 1 or 20. So the probability of that case is (18

20
)20.

For Case ii., we can further subdivide this (into mutually exclusive and exhaustive
subcases) based on where in the sequence we see our first 1:

• If we get a 1 on the first die, then it doesn’t matter what the remaining dice
are (they could even be more 1s), as long as they are not 20. The probability
of this is 1

20
· (19

20
)19.

• We could get something other than 1 or 20 as the first die, then get 1 as the
second die. Then it doesn’t matter what the remaining dice are, as long as
they are not 20. The probability of this is 18

20
· 1
20

· (19
20
)18.

And so on. An expression for the sum of these probabilities is
∑19

i=0(
18
20
)i( 1

20
)(19

20
)19−i.

Case iii. can be handled the same way as Case ii. Therefore the probability
of Case iv., which is what we want, is 1 minus the sum of the other three Cases,
i.e.,

1− (
18

20
)20 − 2

19∑
i=0

(
18

20
)i(

1

20
)(
19

20
)19−i .

As is often the case in combinatorics, there may be a nicer way to do this! Let
me know if you find one.

If you got a different expression and want to check it on Wolfram Alpha: that
answer is

(e) To explain the first expression:

• We will consider the rolls as an ordered string.

• There are 6 possible outcomes for each die, so there are 65 possible outcomes
overall. This is the sample space.

• We have 6 choices for the number that will be the group of 3, and 5 choices
for the number that will be the group of 2.
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• We have
(
5
2

)
ways of assigning the two rolls that will be our “group of 2”

number.

So what goes wrong when we try to apply the same reasoning to the four-die case?

• We will consider the rolls as an ordered string. - still OK

• There are 6 possible outcomes for each die, so there are 64 possible outcomes
overall. This is the sample space. - still OK

• We have 6 choices for the number that will be the group of 2, and 5 choices
for the number that will be the group of 2. – oh no! Now the groups are of
equal size, so saying “the first group of 2 will be 3s and the second group of
2 will be 4s” is the same as saying “the first group of 2 will be 4s and the
second group of 2 will be 3s”. So we are double-counting – an outcome like
4334 will be counted once as “two fours and two threes”, and again as “two
threes and two fours”! What we really want here is ‘one group of 2 will be
4s and the other group of 2 will be 3s”. We can fix the double-counting by
dividing by 2.

Another equivalent way to frame the answer is as
(62)(

4
2)

64
. We just need to choose

two of the six possible numbers to be our repeated values, but there is no notion
that one is “first” and one is “second”.
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