
CS109A Week 7 Notes

Ian Tullis

February 15, 2022

I. Beta: setting the scene

I was introduced to the beta distribution in a (frankly pretty boring) stats class
long ago. All I remembered about it was that – unlike the normal distribution –
it is supported only within a limited range [0, 1], and so it can be a good model
for things like exam scores that can’t be negative.1 But there are many other
distributions with that property, and the math behind the beta is scary – it has
a whole separate gamma function in it! What even is that? So I mostly forgot
about it.

Watch out, Cloud! This giant snake knows probability!

Big mistake! The beta distribution is AWESOME2, and it, along with its multi-
nomial cousin the Dirichlet distribution, has applications all over the place when
we need to quantify uncertainty about uncertainty. If you take CS238 (Deci-
sion Making Under Uncertainty), which I recommend, you will get much more
practice with those.

1To use the beta to model scores on an exam out of 120, for instance, we can just multiply
it by 120.

2You may recall that the last thing I said was AWESOME was linearity of expectation,
and I meant it!
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Suppose we are the main character in a spy movie. It’s still early on in the
film, so for some reason we’re gambling with the supervillain in a Monte Carlo
casino. We’ll be fighting them later in the movie, probably on top of a train on
a different continent, but for now we have to be superficially polite while trying
to crush them at this game.

As is often the case with CS109A casino games, the rules are rather silly. In
each round of the game, the dealer – who is in a tuxedo and wearing white
gloves – flips a fancy coin made of platinum or something. If it comes up heads,
we have to give $10000 to the supervillain. If it comes up tails, the supervillain
has to give $10000 to us.3

We have been playing for a little while, and so far we have lost more rounds
than we have won. We don’t trust this game or the supervillain. They keep
smirking at us, and they seem awfully smug about their chances. As they sip
from a six-figure glass of 100-year-old port, they assure us that our losses are
simply due to chance. And, irritatingly, they have a point: we can’t completely
rule out that possibility. But we think the coin might be unfair – that is, it has
some probability p of coming up heads, and we think p is not 0.5. How do we
express our uncertainty about this in some way other than punching? (since it
is too early in the movie for that)

II. A frequentist approach

We could keep track of the number N of rounds played and the number H of
heads seen, and then declare that p = H

N . This is the “maximum likelihood”
estimate, as we will see in class, and surely that’s the only sensible estimate,
right? And if that’s not precise enough, we can just play more rounds of the
game to get more information, our pocketbook be damned.

A shortcoming of this method is that it only gives us a single value as an
estimate. What if we want some notion of confidence in that estimate? That is,
if we think p = 0.54, for example, are we 95% sure that the value is within 0.02
of that, or is there still a decent chance that it could be farther away, maybe
even below 0.5? (Then we would just look like sore losers!)

Before we dive into the beta distribution, let’s investigate the situation through
the lens of frequentist statistics – which, broadly speaking, asks “what is the
probability of the observed data, given the hypothesis?” In this case, our hy-
pothesis is that the coin is unfair, i.e., p ̸= 0.5. Specifically, we think it is unfair
in the supervillain’s favor, i.e., p > 0.5. But just showing that the coin is un-
fair (without saying in whose favor) should embarrass the supervillain (and the
casino) publicly. So we declare a null hypothesis – basically, that the coin is
fair and nothing fishy is going on – and then proceed to argue that that null

3The real game of baccarat is awfully close to this.
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hypothesis is unlikely to be true, given what we actually saw. And if the null
hypothesis is unlikely to be true, then all that remains are the unsavory alter-
natives...

Problem 1. Suppose that so far, we have played 10 rounds of the game,
and we have seen 8 heads and 2 tails.

(a) For a fair coin (p = 0.5), what is the probability of seeing 8 heads in 10
flips? (Use Python / Wolfram Alpha / etc. to find the value to 3 decimal
places or so.)

(b) This value is pretty small – less than 0.05. We remember from reading
scientific journal articles (in our downtime between spy missions) that, by
convention, results are thought to be “significant” when P < 0.05, i.e.
when they have a less than 5% probability of occurring purely by chance.
Why is it not a convincing argument to just point to your answer from
(a) and say that it is less than 0.05, and so it is very unlikely to have
happened by chance?

(Hint: imagine, instead, that we had flipped 1000 coins and seen 500
heads.)

(c) How could we modify the approach in (b) to argue more convincingly?
(That is, we want to calculate something other than P (X = 8). What
other outcomes should we include?)

(d) Using this new method, what is the probability of seeing the observed
data, given that the coin is fair? Does it fall under the 0.05 threshold?

(e) If we had to make a guess at the value of p, based on the results that you
have seen so far, what would we say? Why?
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Solutions to Problem 1.

(a) The number of heads in 10 flips has the distribution Bin(10, 0.5), and

P (X = 10) =
(
10
8

)
(0.5)8(1− 0.5)10−8. This comes out to ≈ 0.044 .

(b) One problem is that just because an event is low-probability doesn’t mean
that it can’t happen. The supervillain can always counter with this, no
matter how we argue, and indeed, they’re not wrong. But we have to draw
a line somewhere, where a reasonable person would find it implausible that
chance was the only explanation. (If this makes you uncomfortable be-
cause it feels subjective, well, that’s statistics for you! We can try to make
the subjective feel more objective, but all the math in the world can never
make it completely objective.)

But there is a more subtle issue here, which is that our approach is kind
of unfair to the poor supervillain. Suppose we had flipped 1000 coins and
gotten 500 heads. The probability of this (for a fair coin) is around 0.025,
which is less than 0.05, so we could claim that this was not due to chance.
But this is an absurd claim – if we flip 1000 times, what result could be
more like a fair coin than 500 heads? In fact, in this case, there is no out-
come that occurs with probability ≥ 0.05. So no matter what happens,
we will accuse the supervillain of cheating, even if the setup is fair!

(c) Therefore, in our 10-flip case, we should instead be finding the probability
of seeing at least 8 heads. That is, our argument will be: even if the coin
were fair, the probability of seeing at least this extreme a result is very
small.

(d) The values for P (X = 9) and P (X = 10) turn out to be about 0.010

and 0.001. So the overall P (X ≥ 8) is ≈ 0.055 , which is over the 0.05
threshold (and therefore not “statistically significant”). So maybe we
shouldn’t go accusing the supervillain just yet!

(e) It seems most sensible to conclude that p = 8
10 , and we will make this more

rigorous in a future CS109 lecture on maximum likelihood. But we might
have a bad feeling about this. Do we really feel confident concluding, on
the basis of a small amount of data, that p is so large? As an extreme
case, what if we had seen three heads in three flips? Does it really make
sense to conclude that p = 1?

III. A Bayesian approach

Our frequentist methods above gave us an estimate of the coin’s probability p
of coming up heads (0.8), and a way to argue that p ̸= 0.5. But what if we want
to explicitly quantify our beliefs about, say, how much more likely p is to be 0.8
than 0.79? What if we want to see a distribution of these beliefs, to get a sense
of whether they are tightly centered around 0.8 (in which case we can be more
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confident) or more diffuse (in which case we probably need more information)?
We can do this with frequentist methods as well, but this is where Bayesian
methods really shine.

As we’ve already seen in CS109, Bayesian methods involve bringing in a prior
set of beliefs. We might believe that the person who just walked into our ice
cream shop has an 0.7 probability of buying some ice cream, just based on over-
all trends about customers (maybe yesterday we saw 70 out of 100 customers
make a purchase). But then we see this particular customer look long and hard
at the mint chocolate chip, and maybe our posterior probability goes up to 0.95.
Notice that Bayesian methods ask “what is the probability of the hypothesis,
given the observed data?”, whereas frequentist methods ask the opposite.

There have been acrimonious disputes between frequentists and Bayesians in
the literature and elsewhere. To oversimplify a couple of the points of con-
tention:

• Frequentists think that explicitly bringing your own beliefs into an analysis
makes everything hopelessly subjective.

• Bayesians argue that what we really want to know is the probability of the
hypothesis given the observed data, and doing it the other way around is
artificial and misguided.

My own position is that – as much as I usually dislike lazy both-sides-ism –
both approaches really do have their merits. There is no canonically correct
way to do statistics, because uncertainty can only be described, not eliminated.
Probably the contemporary ethos is to use whatever drives progress forward
and brings in the most sweet, sweet cash from venture capitalist investors. Of
course, it is dangerous to uncritically just try everything and see what works
– this makes it more likely that some approach will only appear, by chance, to
work well! But I think it’s best to understand both frequentist and Bayesian
methods well enough to be able to use them in situations that seem appropriate.

So, back to the beta distribution and our spy movie example. The beta dis-
tribution itself is not inherently Bayesian, but the way we use it in CS109 is.
Specifically, we have some set of beliefs about the value of p, and then each time
we make an observation (the outcome of one round), we update those beliefs.

What set of beliefs should we have even before the game begins? In this case
we might reasonably come in expecting the supervillain to be a cheater. Or, we
might be unusually magnanimous (for a secret agent), and come in very confi-
dent that the coin is fair. A third approach (which is maybe less objectionable
to frequentists) is to come in giving every possible value of p equal likelihood,
i.e. “flat priors”, and this is what we will often do when working with betas.

Let’s derive the beta distribution, like Chris did in class...
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Problem 2. Say we came into the game believing that every possible value
of p was equally likely. Then we saw 8 heads and 2 tails.

(a) First of all, we need to turn “every possible value of p is equally likely”
into a PDF – call it f(x) or f(p = x). That is, if we want the probability
density of our belief that p = 0.9, we evaluate f(0.9). Here we use x to
avoid confusion with p, which is a single fixed (but unknown) value rep-
resenting how unfair the coin really is.

This PDF should just look like a horizontal line floating somewhere above
the x-axis; it should have the same value c everywhere. It should also only
be supported on the range [0, 1], since p is a probability and can only take
on values in that range. What is f(x)?

(b) Using Bayes’ Rule, we can express f(p = x|8 heads out of 10) as

P (8 heads out of 10|p = x)f(p = x)

P (8 heads out of 10)

One of those terms is your distribution from part (a) of this problem.
Another is very similar to what you found in part (a) of problem 1. Replace
both of those terms with expressions in terms of x and/or constants.

(c) We need to use a version of the Law of Total Probability in the denomi-
nator, but here we can’t write out a finite sequence of terms that look like
the numerator. What integral should we use instead? (Use your numera-
tor from this problem, but introduce a new letter like y as the integration
variable, to avoid confusion with the x in the numerator).

(d) Evaluate this integral to get a constant, then plug it into our expression
from (b) to get our final Bayesian posterior distribution.

(e) Look at the Wolfram Alpha result for beta distribution with alpha

= 9, beta = 3. You should see that it gives the same PDF. Visually find
the value of x for which f(x) is maximized; is it what you expect?

(f) What is the CDF of the beta distribution that you just found? (Feel free
to use Wolfram Alpha to do the integral.) Using this CDF, what is the
probability that the coin is quite unfair – i.e. has p ≥ 0.55, for example?

(g) Why could we not have answered part (f) directly using frequentist meth-
ods? (Put differently, what did we include in our Bayesian method that
let us answer that question?)

(h) A uniform distribution is Beta(1, 1). How different would our posterior
beta distribution look if we had instead started with Laplace smoothing,
i.e., Beta(2, 2)? (Don’t go through all the steps of the problem again –
just consider what the final beta distribution’s parameters α and β would
be in this case. Then use Wolfram Alpha to plot that.)
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Solutions to Problem 2.

(a) This uniform distribution is a PDF, so it has to have
∫ 1

0
cdx = 1. Inte-

grating
∫ 1

0
cdx, we get [cx]10 = c(1) − c(0) = c. So c = 1, and therefore

f(x) = 1 .

(b) For P (8 heads out of 10)|p = x), we again use the binomial distribution,
but now with a success probability of x. So this evaluates to

(
10
8

)
x8(1−x)2,

which is 45x8(1 − 2x + x2) = 45x8 − 90x9 + 45x10. (This form will be
easier to integrate later on.)

Plugging in that expression and our prior from part (a) (which is just
1, so it goes away), we now have

f(p = x|8 heads out of 10) =
45x8 − 90x9 + 45x10

P (8 heads out of 10)

(c) The integral is ∫ 1

0

(45y8 − 90y9 + 45y10)dy

(d) Evaluating this, we get

[5y9 − 9y10 +
45

11
y11]10 = 5− 9 +

45

11
=

1

11

f(p = x|8 heads out of 10) =
45x8 − 90x9 + 45x10

1
11

= 495x8 − 990x9 + 495x10

(e) The PDF looks like this:

and the maximum is at 0.8, which is what we would expect. (It is exactly
0.8, as you could check directly via calculus.)
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(f) As usual, the CDF is the integral of the PDF from the lower end of the
support range to some stopping point y.∫ y

0

(495x8 − 990x9 + 495x10)dx = [55x9 − 99x10 + 45x11]y0 = 55y9 − 99y10 + 45y11

To find the area of the part of the PDF that is below 0.55, we evaluate the
CDF at 0.55 to get 55(0.55)9 − 99(0.55)10 +45(0.55)11 ≈ 0.065. Then the

area that is above 0.55 is ≈ 1− 0.065 ≈ 0.935 . That is, we have a pretty
strong belief that the true probability p of the coin coming up heads is
0.55 or higher.

(g) The critical piece of information that the Bayesian method brought in was
the assumption that, in the absence of other information, all values of p
were equally likely. Without such an assumption, it doesn’t even make
sense to talk about the probability of p taking on any particular value. It
depends on how evil the supervillain was feeling this morning, what fake
coins they own, and so on. This seems hopelessly complicated to quantify.
So maybe it’s not so bad to make a very basic assumption (flat priors)
and then iterate from there?

However, we shouldn’t lose sight of the fact that our probability estimate
includes an assumption. That is, we have not objectively determined that
the true probability of p ≥ 0.55 is 0.935. If we had used a non-flat prior
distribution, we would have gotten very different results...

(h) Starting with Beta(2, 2) and adding 8 “successes” to α and 2 “failures”
to β, in this case we would end up with Beta(10, 4):
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This is fairly close to our original Beta(9, 3), but now our best estimate
of p is slightly below 0.8 – it has been dragged down a bit because the
Laplace smoothing essentially adds one “bonus” head and one “bonus”
tail into the mix.

On the other hand, suppose that we come in naively believing that the
coin is very fair, i.e., something like Beta(50, 50). Then after our 10 flips,
we believe Beta(58, 52). Our prior beliefs were so strong that the new
data barely changes them. So – as a frequentist would point out – the
choice of prior distribution can dramatically change the results!
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IV. Bayesian Networks

We have been cooped up inside all day coding, and we are about to leave
Stanford to head into San Francisco on 101. We check the traffic on Google
Maps. Oh no, 101 is bright red! Why is the traffic so much worse than usual?
We come up with a couple of theories:

• There might be a Warriors game tonight.

• It might be raining, and as we all know, in general, coastal Californians
can’t drive in any kind of weather.4

We also know that on days when there is a Warriors game, people are more
likely to wear Warriors jerseys.

Of course, traffic is sometimes bad for other reasons, and it might just hap-
pen that more people wear Warriors jerseys on some days. So we can’t rule out
the effects of chance.

Problem 3. Let:

• W be the event that there is a Warriors game,

• R be the event that it is raining,

• T be the event that there is unusually bad traffic, and

• J be the event that more people than usual are wearing Warriors jerseys.

(a) Translate the information given on this page into a Bayesian network
with circles for W , R, T , and J , and arrows between them as appropriate.
(Assume, rather unrealistically, that there are no other specific factors
involved besides chance. Note that this model assumes that R and W are
independent, which makes sense for an indoor sport!)

(b) In each of the following situations, assume that the person operates under
the belief system above, but unless otherwise stated, they start off knowing
nothing – i.e., they do not know whether there is a Warriors game tonight,
whether it is raining, whether there is unusually bad traffic, or whether
more people than usual are wearing Warriors jerseys. or whether there is
a Warriors game tonight. For this part, try to think intuitively and not in
terms of specific probabilities. Remember that events T and J could each
happen, with at least some probability, by chance; that is, it is possible
that more people than usual are wearing Warriors jerseys, even though
there is no Warriors game.

(i) Klay already knows that traffic is unusually bad. He checks the
weather and sees that it is not raining. Does this new information
change his belief about whether there is a Warriors game tonight?

4I include myself in this statement!
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(ii) Draymond sees that more people than usual are wearing Warriors
jerseys. Does this change his belief about whether traffic is unusually
bad? Does this change his belief about whether it is raining?

(iii) Steph already knows that there is no Warriors game tonight. Then
he sees that more people than usual are wearing Warriors jerseys.
Does this change his belief about whether traffic is unusually bad?

(iv) Ayesha already knows there is a Warriors game tonight. Then she
sees that traffic is unusually bad. Does this change her belief about
whether it is raining?

(c) (Under construction – please skip this one for now.) Now suppose that
the actual underlying model is:

• P (R) = 0.2. (Hey, we can dream.)

• P (W ) = 0.1.

• P (T |R∩W ) = 0.9; P (T |Rc∩W ) = 0.8; P (T |R∩W c) = 0.7;P (T |Rc∩
W c) = 0.1.

• P (J |W ) = 0.6; P (J |W c) = 0.1.

(i) What are P (R ∩W ), P (Rc ∩W ), P (R ∩W c), and P (Rc ∩W c)?

(ii) What are P (T |W ), P (T ), and P (W |T )?
(iii) What is P (W |T,R)? Comparing this to P (W |T ), does this fit your

answer to (b)(i)?

(iv) Time permitting, try to check some of the other statements as well.
It may be easiest to make a table with the probabilities of all 16
of the possible scenarios, although the whole point of these Bayesian
networks is to avoid having to do this explicitly. Make sure you know
how to do this yourself, but the results are provided here.

W R T J Prob.
0 0 0 0 0.5832
0 0 0 1 0.0648
0 0 1 0 0.0648
0 0 1 1 0.0072
0 1 0 0 0.0486
0 1 0 1 0.0054
0 1 1 0 0.1124
0 1 1 1 0.0136
1 0 0 0 0.0064
1 0 0 1 0.0096
1 0 1 0 0.0256
1 0 1 1 0.0384
1 1 0 0 0.0008
1 1 0 1 0.0012
1 1 1 0 0.0072
1 1 1 1 0.0108
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Solutions to Problem 3.

(a) The Bayesian network looks like this:

(b) (a) Yes. If rain and the Warriors game are the two possible explanations
(other than chance) for the bad traffic, and rain is ruled out, then it
is much more likely that a Warriors game is to blame.

(b) Yes; No. Given that more people than usual are wearing jerseys,

Draymond’s belief that there is a Warriors game is strengthened.
Because this is known to result in bad traffic, his belief that there is
bad traffic is also strengthened.

However, intuitively, this all has nothing to do with whether it is rain-
ing. Even though rain might make already bad traffic worse, Dray-
mond knows that whether or not it rains is independent of whether
or not there is a Warriors game, so feeling more confident that there
is a Warriors game shouldn’t tell him anything about rain.

We might fool ourselves with an argument like “well, we think traffic
is bad, and bad traffic is associated with rain”, but our new belief
about the traffic is already fully explained by our new belief about
the Warriors game. We really haven’t learned anything about the
rain.

(c) No. First of all, since Steph knows that there is no Warriors game,
and that is the only factor (besides chance) that influences whether
more people than usual are wearing Warriors jerseys, he can safely
conclude that the latter is due to chance.

Now, usually, the only value in knowing whether more people are
wearing Warriors jerseys is that it makes Steph more likely to believe
there is a game, but given that he already knows there isn’t one, he
learns nothing.
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(d) Yes. This one is tricky! At first it might seem that Ayesha’s knowl-
edge of the Warriors game fully explains the bad traffic. But that
would only be true if a Warriors game surely resulted in bad traffic.
Otherwise, there is some chance that the bad traffic is not due to the
Warriors game, and in that case, as usual, bad traffic increases our
suspicion that rain may be involved.

There is a set of rules, involving something called “d-separation”,
to make this type of analysis easier. This is not in scope for CS109,
but you might enjoy learning more: https://bayes.cs.ucla.edu/
BOOK-2K/d-sep.html. I personally always have trouble remember-
ing these rules, and I prefer to think through example situations.
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