
CS109A Week 8 Notes

Ian Tullis

February 22, 2022

I. More Stressed Than Thou

Suppose that our friend from UC Berkeley claims that Cal students sleep less
than Stanford students.1 She interviewed 9 Cal students and 7 Stanford stu-
dents, and asked each person how many hours of sleep they got in the last week.2

Suppose that the responses were:

• Cal students: 36, 59, 40, 53, 48, 48, 28, 36, 48 (mean = 44)

• Stanford students: 55, 40, 60, 48, 53, 50, 37 (mean = 49)

Our friend points out the large difference in means. We are skeptical. For one
thing, these are very small sample sizes. How do we know the results aren’t just
due to chance? That is, what if she unwittingly interviewed Cal students who
don’t happen to sleep as much, and Stanford students who happen to get more
sleep?

We want tell our friend to go out and collect more data, but she is currently
asleep. (Suspicious!) Luckily, we just learned about bootstrapping in CS109.
Bootstrapping seems like a way to wring more truth out of a limited set of data.
Is it?

When we bootstrap, we are making a massive assumption, which is so mas-
sive that I’m going to break out the LaTeX
Large environment:

the observed distribution of our data is the same as the
real distribution of the entire underlying population

So if the overall set of data we collected was badly biased, this assumption is
illegitimate and we are already out of luck! In a small enough dataset, this

1The r/berkeley Reddit certainly does seem to be more stressed out, on average, than
r/stanford, but Stanford students also seem to go to greater lengths to hide their stress. So
I’m honestly not sure what the real answer is here.

2The official position of CS109A is that getting more sleep is a good thing. Sometimes it
is worth setting the pset aside and letting your subconscious make sense of things overnight!
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might happen due to chance, which is the very thing we are trying to use boot-
strapping to argue about!

We can proceed with our analysis, but we (and our friend) should be aware
of the inherent limitations. There is no way to magically get more data from
less data without paying a price, and even though bootstrapping can give us
objective-sounding values, we should never forget that bolded assumption above.
If we don’t believe it, then we shouldn’t believe the results of bootstrapping ei-
ther.

That said, let’s look at how we would use bootstrapping in this situation. We
are going to assume that the combined set of Cal and Stanford data accurately
represents the combined Cal and Stanford population. We think of this com-
bined population as a distribution rather than a set of 16 people. The draws are
independent and identically distributed, i.e., drawing a person with 59 hours of
sleep doesn’t “use up” that value or make it less or more likely on future draws.

We will repeatedly do the following: draw a new fake “Cal” sample of 9 stu-
dents from that distribution, draw a new fake “Stanford” sample of 7 students
from that distribution, find the difference between the “Stanford” mean and the
“Cal” mean, and compare it to the actual difference between the means of the
Stanford and Cal samples.

Problem 1.

(a) Why don’t we draw our “Cal” sample from only the original Cal students,
and the “Stanford” sample from only the original Stanford students?

(b) Why is it important that our “Cal” and ”Stanford” samples have the same
sizes as the real ones?

(c) Suppose we do the following: run 100000 trials, and count the number of
trials in which the difference in means between the “Stanford” and “Cal”
samples equals 5 (which is the real difference). We then divide this number
of trials by 100000, find that the result is very small, and conclude that
the actual observed difference is unlikely to have arisen by chance. What’s
wrong with this argument? How do we fix it? (This should remind you of
something from last week’s 109A...)

(d) Also thinking back to last week’s 109A, is this a frequentist or Bayesian
method?

(e) When we run the corrected version of the method in part (c), suppose we
get a value of 0.13046. What should we conclude from this? (What can
we say to our friend?)

(f) Is it ever possible for a bootstrap setup like this to be unable to see a
difference as large as the one observed in the real data?
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Solutions to Problem 1.

(a) The “null hypothesis” underlying this method is that there is no differ-
ence between the Cal and Stanford samples, i.e. they are part of the same
overall group. Then we ask: if this null hypothesis is true, how often
would we see the same kind of difference that we actually saw in the real
data? If that turns out to happen commonly by chance, then we should
be skeptical that the difference in means is based on any real difference
between Cal and Stanford.

However, if we choose a fake Cal from the Cal samples and a fake Stanford
from the Stanford samples, we are just reproducing the original (and pos-
sibly unrepresentative) difference from the data! That defeats the purpose
of what we are trying to do: see how often such a difference would arise
by chance.

(b) A smaller sample is inherently less likely to look representative, in a way
that contributes to an artificial (chance-based) difference, so sample sizes
do matter when we do our bootstrap.

As a thought experiment, suppose that when bootstrapping, we generated
“Cal” and “Stanford” distributions of 50000 students each. (Why not? We
can keep drawing as many people as we want!) But then these two samples
would pretty much never be very different, so we would pretty much always
conclude that the observed real differences couldn’t have arisen by chance.

Or, on the other hand, suppose that we generated “Cal” and “Stanford”
distributions of 1 student each. Then we would see differences ≥ 5 very of-
ten, and we would be very prone to concluding that the original difference
was due to chance.

(c) The probability of the difference in the fake sample means turning out to
be exactly 5 is very small, so we will always conclude that the observed
difference is unlikely to have arisen by chance, and is therefore signifi-
cant/real. But this is the wrong metric – we want to know the probability
of seeing a difference at least as extreme as the real difference. That is,
the real argument here is about whether the difference of 5 counts as large
enough to not be just noise... not about whether that exact value, 5, is
likely.

(d) This is a frequentist method; we are finding a p-value, i.e., the probability
of seeing (at least this extreme of) a result due to chance alone (i.e. under
the null hypothesis). It is not Bayesian; we are never bringing in a prior
belief.

(e) This result is a p-value: p = 0.13046. It is not less than the standard
threshold of 0.05, so we conclude that the observed difference could be
just noise – we have a reasonable doubt.
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Beware of those many digits of precision, though! For one thing, there
is inherent randomness in the bootstrap procedure itself, so we would al-
most certainly get a different (but pretty close) p-value from another set of
100000 trials. For another thing, the assumption underlying the bootstrap
method is probably questionable here – the combined sample size of 16 is
still unlikely to be very representative of the entire population. (Where
do we draw the line? What counts as “sufficiently representative”? This
might be a fun topic to explore for a challenge project!)

(f) No, because a bootstrap trial can always (in theory) reproduce exactly the
original data, just by chance. So there is at least some positive probability
of seeing a difference at least as large as the real one.

By the way, here is the code I wrote to do the bootstrapping:

import numpy as np

cal = [36, 59, 40, 53, 48, 48, 28, 36, 48]

stanford = [55, 40, 60, 48, 53, 50, 37]

true_diff = np.mean(stanford) - np.mean(cal)

combined = cal + stanford # you can concatenate two lists with +

num_trials = 100000

at_least_as_extreme = 0

for _ in range(num_trials):

fake_cal = np.random.choice(combined, size=len(cal), replace=True)

fake_stanford = np.random.choice(combined, size=len(stanford), replace=True)

fake_diff = np.mean(fake_stanford) - np.mean(fake_cal)

if fake_diff >= true_diff:

at_least_as_extreme += 1

print("p-value is: ", at_least_as_extreme/num_trials)
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II. Let’s ask about something else

Why do a boring survey about sleep when there are more important matters to
ask about? This is CS109 – we should be engaging with real-world issues!

Problem 2.

(a) Suppose that any random person is 30% likely to prefer Squirtle as a
Gen 1 starter, 20% likely to prefer Bulbasaur, and 50% likely to prefer
Charmander3. We go out on the streets of Palo Alto and ask 12 people
what their favorite starter is. What is the probability that there will be a
three-way tie? (Hint: there is a distribution that is perfect for this!)

(b) Now suppose instead that we go around asking people what their favorite
Pokémon is. As of the time that these notes were written, there are 905
Pokémon. For now, assume, somewhat unrealistically, that each person
we talk to is equally likely to prefer any of them. What is the expected
number of people we will need to talk to in order to get every Pokémon
as an answer at least once? (Come up with an expression, and then use
Wolfram Alpha or Python to evaluate it.)

Hint: Break this up into a series of checkpoints. The first checkpoint
is that we are trying to get our first answer that we haven’t heard yet.
This is trivial; no matter what the first person says, we satisfy this re-
quirement. Then the second checkpoint is that we are trying to get our
second answer that we haven’t heard yet. So we just need to keep talking
to people until we find one who doesn’t give the answer we already got –
what is the expected number of people we will need to ask? And so on.

(c) The assumption in part (b) is obviously unrealistic, since more people
are going to prefer, e.g., Garchomp to Stunfisk. Roughly how would you
expect this to influence the answer to (b)? As a specific example, suppose
that the preferences follow a power law distribution in which the second-
place choice is half as likely as the first-place choice, the third-place choice
is one-third as likely as the first-place choice, and so on. Or, what about
an extreme case in which there is some Pokémon (*cough* Mr. Mime
*cough*) who is by far the least popular?

3and therefore be correct
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Solutions to Problem 2.

(a) This is a job for the multinomial distribution! Specifically, let S and B
be random variables for the numbers of people (out of the 12) who prefer
Squirtle and Bulbasaur, respectively. Then

P (S = s,B = b) =

(
12

s, b, 12− s− b

)
0.3s0.2b0.512−s−b

Plugging in s = 4 and b = 4, we have
(

12
4,4,4

)
0.340.240.54 = 12!

4!4!4! (0.3 · 0.2 ·
0.5)4 ≈ 0.028 .

What if we don’t remember the form of the multinomial coefficient? Well,
we have 12 people. We first want to pick 4 of them to be Squirtle fans.
Then we pick 4 of the remaining 8 to be Bulbasaur fans, and all of the
leftover 4 are Charmander fans. So the total number of ways is

(
12
8

)(
8
4

)(
4
4

)
.

But this is 12!
8!4! ·

8!
4!4! ·

4!
4!0! , which simplifies to 12!

4!4!4! .

(b) This problem is very similar to the card shuffling problem (1d) on the
Spring 2016 practice midterm. It is also an instance of an important and
ubiquitous phenomenon in combinatorics and algorithms: the coupon col-
lector problem. The name is supposed to suggest a contest in which there
are many types of coupon, and you get a coupon of a uniformly randomly
selected type e.g. each time you make a purchase, and you need to collect
at least one coupon of each type to win. Intuitively, it is easy to get “new”
(i.e., previously unseen) types early on, but then those last few that you
don’t have become harder and harder to get, as you keep (frustratingly)
getting types you already have!

Let’s see what the math says. Proceeding in accordance with the hint:
the first person surely names a Pokémon we haven’t heard yet, and then
we just have to hear a Pokémon other than that first kind. The chances of
this are 904

905 , but we could get unlucky and hear the first Pokémon again
(chances 1

905 ) before asking another person, and have a 904
905 chance once

again... We see that this is a geometric distribution with p = 904
905 , so the

expected number of people we will need to get our next different Pokémon
is 1

p = 905
904 .

Proceeding in this way, reaching the next milestone (a third different
Pokémon) is another geometric distribution with p = 903

905 , so we need
to ask an expected 905

903 people, and so on. When we are looking for our
905th and final distinct Pokémon, we only have a 1

905 chance of getting
that one, so in expectation, it takes 905 people to get through this phase!

Therefore the answer is

905∑
i=1

905

i
, which means we need to talk to ≈ 6684
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people (in expectation) to catch ’em all. Notice that the summation looks
like it goes in the opposite order of our argument above, but the order of
the sum does not matter.

In general, the coupon collector problem with n distinct coupons (each
equally likely to be chosen) has an answer that is O(n log n).

(c) As we saw above, the last few different Pokémon are the hardest to get. In
fact, just those last ten account for almost 40% of the overall answer! But
with the assumption that all Pokémon are equally preferred, no particular
Pokémon are inherently hard to get.

If we change to e.g. a power-law distribution, though, we would expect
the rarest Pokémon (the ones that are 900, 901, ..., 905 times less frequent
than the most popular one) to heavily determine the amount of people we
need to talk to. We will see 905 of the single most popular Pokémon (say,
Charizard) for every one of the least popular Pokémon (say, Mr. Mime).

In fact, out of every
∑905

i=1 i = 409965 Pokémon, we would expect only
one of them to be Mr. Mime! So the expected number of people we need
to talk to should be at least 409965, and probably greater, because we
may well have failed to see some of the other very-unloved Pokémon. I
wrote some code, and the average of 10000 trials was around 515000. The
smallest result was 56573, and the largest result was 4135136.

In the even more extreme case that one Pokémon is much rarer than
the others, that one might almost singlehandedly determine the final an-
swer, i.e., we may find one or more full sets of the other 904 before we find
even one of that one. A good approximation of the answer, then, might
be 1

p , where p is the probability of finding the least-liked Pokémon.

Chansey is probably the most CS109 of all Pokémon: the name suggests
randomness, and it has type Normal.
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III. Just another exciting Friday night

Problem 3. Suppose that we just bought a box of 1000 loose quarters at the
bank. We are hoping to find one of the quarters minted in 2019 or 2020 at West
Point – they have a “W” mintmark, and not many were made, so they are po-
tentially worth 10 or 20 bucks to collectors. Suppose, somewhat optimistically,
that about 1 in 10000 quarters in circulation has a “W” mintmark.

This is one of 10 kinds of “W” quarters in circulation. Ian has found two of
these kinds so far.

(a) What is an expression for the exact probability P (X = x) that we will
find exactly X “W” quarters in the box?

(b) Find and evaluate a Poisson approximation to P (X ≥ 1), i.e., the proba-
bility that we find at least one “W” quarter in the box.

(c) Find and evaluate a normal approximation to P (X ≥ 1).

(d) Without knowing the actual answer, which of the two approximations
would you trust more? Why?

(e) Which of the approximations required a continuity correction? (Neither?
One? Both?)

(f) Suppose we instead wanted the probability of finding exactly one “W”
quarter in the box. You don’t need to recalculate this, but does this
change your answer to (e)?
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Solutions to Problem 3.

(a) The distribution here is a binomial: P (X = 1) =
(
1000
1

)
(0.0001)1(1 −

0.0001)999. This is ≈ 0.0905 .

(b) We set the Poisson’s λ to be the mean of the binomial distribution, which
is np = 1000 · 1

10000 = 1
10 . Then to find P (X ≥ 1), we take 1 − P (X =

0) = 1− e−0.1·(0.1)0
0! = 1− e−0.1, which is ≈ 0.0952 .

(c) We set the normal’s µ to be the mean of the binomial distribution, 0.1, and
the variance to be the binomial’s variance of np(1−p) = 0.09999. Then to
find P (X ≥ 1), we need to use the translation of the “1” bucket in discrete-
land to [0.5, 1.5] in continuous-land. We want the probability of being in
at least the 1 bucket (or higher), so, using the continuity correction, we
take 1−Φ( 0.5−0.1√

0.09999
). Using the CS109 CDF calculator, this comes out to

≈ 1− 0.8971 ≈ 0.1029 .

(d) The Poisson approximation works well when p is very small and n is large.4

Both of those things are true here!

The normal approximation, however, doesn’t always do so well when
the individual distributions that are being added have a very skewed
shape. Each one is a Bernoulli with p. = 0.0001, i.e., the PMF has
P (0) = 0.9999, P (1) = 0.0001. If you think about the distribution re-
sulting from adding together a small number of these, it’s clear that it
still looks nothing like a Gaussian. Will adding 10000 of them together
be enough for the awesome power of the Central Limit Theorem to kick in?

No, as it turns out! The real answer, which you can get as

1000∑
i=1

(
1000

i

)
(0.0001)i(0.9999)1000−i

is ≈ 0.0952. So the Poisson approximation is spot on and the normal
approximation is quite a ways off!

4See problem 2 in the Week 6 notes to review why this is.
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If we look at the shape of the real binomial distribution, it’s no wonder a
normal curve can’t handle it very well:

The point of this problem is to demonstrate that the Central Limit Theo-
rem, as amazing as it is, does not mean that the normal distribution is the
only one we ever need again! Depending on the distribution in question,
it may take a very large number of them indeed for the sum to start to
look Gaussian. If we use n = 100000 rather than n = 1000 for the above
problem, then we actually do get something kinda Gaussian-looking:

(e) The Poisson distribution is discrete-valued, so a Poisson approximation of
a binomial goes from discrete-land to discrete-land, and no continuity cor-
rection is needed. But the normal distribution is continuous-valued, so a
normal approximation of a binomial goes from discrete-land to continuous-
land, which is why we needed the continuity correction in part (c) above.

(f) No. In this case, to get the area under the curve in continuous-land corre-
sponding to the “1” bucket in discrete-land, we would find Φ( 1.5−0.1√

0.09999
)−

Φ( 0.5−0.1√
0.09999

). We are still using continuity corrections.
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IV. An only mildly scary convolution

This is a small stretch past CS109 material, but it can be satisfying to see how
two normal distributions add.

Problem 4.

(a) Let X1 and X2 be independent standard normal random variables. Let
Y = X1 + X2. Without using any normal PDFs, integrals, etc. yet –
based just on what you have learned about adding independent normal
random variables – what distribution and parameters would you expect
Y to have?

(b) Now, write an expression for f(Y = y) in terms of f(X1) and f(X2) –
don’t use the normal PDF yet. It should be an integral from −∞ to ∞.

As a hint, recall a similar discrete case: let Z1 and Z2 be the results
of rolling (independent) single 6-sided dice, and let W = Z1 + Z2. Then

P (W = w) =
∑6

z=1 P (Z1 = z)P (Z2 = w − z). This is the sum over all
the ways that the two dice can add up to w, where we call the result of
the first die z, and therefore the second die must be w − z.

(c) Recall that a normal distribution with mean µ and variance σ2 has the
PDF:

f(X = x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

What is the PDF of a standard normal distribution?

(d) Replace f(X1) and f(X2) in your expression with standard normal PDFs.
Then rearrange the terms so that the parts that do not depend on y are
outside the integral. Finally, use the fact, which you can verify on Wolfram
Alpha, that – with k being any constant and u being the integration
variable – ∫ ∞

−∞
e−u2−kudu =

√
πe

k2

4

What does f(Y ) end up being, in terms of y? What distribution is this,
and what are its parameters? Does this match what you expect? Isn’t
this neat?

There are very few distributions that have this property; it’s not important for
CS109, but they are called stable. Another example is the Cauchy distribution,
which is also not important for CS109, but has some weird and fun properties
like an undefined mean and variance (and it comes up in actual applications,
e.g., in CS261).
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Solutions to Problem 4.

(a) We have seen in class that if we add two independent normal random
variables distributed as N (µ1, σ

2
1) and N (µ2, σ

2
2), the result is another

normal random variable distributed as N (µ1 + µ2, σ
2
1 + σ2

2). In this case,
since we are adding two standard normal RVs, this becomes N (0, 2).

(b) The analogous expression to the die example is

f(Y = y) =

∫ ∞

−∞
f(X1 = x)f(X2 = y − x)dx

That is, we are taking a kind of “sum” (an integral) over all of the (infinite)
ways that the two variables X1 and X2 can add up to Y = y.

(c) Plugging in µ = 0 and σ2 = σ = 1, we get

f(X = x) =
1√
2π

e−
x2

2

(d) Using f(X1 = x) = 1√
2π

e−
x2

2 and f(X2 = y − x) = 1√
2π

e−
(y−x)2

2 in our

integral from part (b), we get

f(Y = y) =

∫ ∞

−∞

1√
2π

e−
x2

2
1√
2π

e−
(y−x)2

2 dx

Simplifying this somewhat, we have

f(Y = y) =
1

2π

∫ ∞

−∞
e−

x2

2 e−
y2−2xy+x2

2 dx

Simplifying further to move the y-only term out:

f(Y = y) =
1

2π
e−

y2

2

∫ ∞

−∞
e−x2−xydx

Using the integral given in part (d), this becomes

f(Y = y) =
1

2π
e−

y2

2
√
πe

y2

4

and all this boils down to

f(Y = y) =
1

2
√
π
e−

y2

4

which is the PDF for a normal distribution with mean 0 and variance 2,
just as we expected in (a). HELL YEAH
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